Skip to main content

Possible mechanism for transfer of motor skill learning: implication of the cerebellum

Abstract

Transfer of learning takes place whenever our previous knowledge and skills affect the way in which new knowledge and skills are learned. The magnitude of transfer may depend on how prior memory is retrieved so that it may be relevant and usable in the present in terms of internal representation. This review highlights the power of neuroimaging techniques such as positron emission tomography (PET) to identify the underlying neuronal system of intermanual transfer by showing the asymmetry in the system for the same motor skill between hands. The review focuses on cerebellar cross-activation, cerebellar activation contralateral to the active hand, which would contribute to intermanual transfer of monkey tool-use learning, together with the fronto-parietal cortical circuit. Finally, this article proposes the relationship between the cerebellum and the possible mechanism underlying non-specific transfer that allows thinking in a flexible and productive manner.

This is a preview of subscription content, access via your institution.

References

  1. Taylor HG, Heilman KM. Left-hemisphere motor dominance in righthanders. Cortex 1980; 16: 587–603.

    PubMed  CAS  Google Scholar 

  2. Parlow SE, Kinsbourne M. Asymmetrical transfer of training between hands: implications for interhemispheric communication in normal brain. Brain Cogn 1989; 11: 98–113.

    PubMed  Article  CAS  Google Scholar 

  3. Bruner JS. The course of cognitive growth. Amer Psychol 1964; 19: 1–15.

    Article  Google Scholar 

  4. Bartlett FC. Thinking. London,: Allen & Unwin, 1958.

    Google Scholar 

  5. Gentner D, Stevens AL. Mental Models. Hillsdale, NJ,: Erlbaum, 1983.

    Google Scholar 

  6. Tulving E. Elements of Episodic Memory. New York,: Oxford University, 1983.

    Google Scholar 

  7. Wheeler MA, Stuss DT, Tulving E. Toward a theory of episodic memory: the frontal lobes and autonoetic consciousness. Psychol Bull 1997; 121: 331–354.

    PubMed  Article  CAS  Google Scholar 

  8. Squire LR. Mechanisms of memory. Science 1986; 232: 1612–1619.

    PubMed  Article  CAS  Google Scholar 

  9. de Guise E, del Pesce M, Foschi N, Quattrini A, Papo I, Lassonde M. Callosal and cortical contribution to procedural learning. Brain 1999; 122(Pt 6): 1049–1062.

    PubMed  Article  Google Scholar 

  10. Pascual-Leone A, Wassermann EM, Grafman J, Hallett M. The role of the dorsolateral prefrontal cortex in implicit procedural learning. Exp Brain Res 1996; 107: 479–485.

    PubMed  Article  CAS  Google Scholar 

  11. Aizawa H, Inase M, Mushiake H, Shima K, Tanji J. Reorganization of activity in the supplementary motor area associated with motor learning and functional recovery. Exp Brain Res 1991; 84: 668–671.

    PubMed  Article  CAS  Google Scholar 

  12. Hikosaka O, Sakai K, Miyauchi S, Takino R, Sasaki Y, Putz B. Activation of human presupplementary motor area in learning of sequential procedures: a functional MRI study. J Neurophysiol 1996; 76: 617–621.

    PubMed  CAS  Google Scholar 

  13. Saint-Cyr JA, Taylor AE, Lang AE. Procedural learning and neostriatal dysfunction in man. Brain 1988; 111(Pt 4): 941–959.

    PubMed  Article  Google Scholar 

  14. Iriki A, Tanaka M, Iwamura Y. Coding of modified body schema during tool use by macaque postcentral neurones. Neuroreport 1996; 7: 2325–2330.

    PubMed  CAS  Article  Google Scholar 

  15. Iriki A, Tanaka M, Obayashi S, Iwamura Y. Self-images in the video monitor coded by monkey intraparietal neurons. Neurosci Res 2001; 40: 163–173.

    PubMed  Article  CAS  Google Scholar 

  16. Ishibashi H, Hihara S, Takahashi M, Heike T, Yokota T, Iriki A. Tool-use learning selectively induces expression of brain-derived neurotrophic factor, its receptor trkB, and neurotrophin 3 in the intraparietal multisensory cortex of monkeys. Brain Res Cogn Brain Res 2002; 14: 3–9.

    PubMed  Article  CAS  Google Scholar 

  17. Ito M. Long-term depression as a memory process in the cerebellum. Neurosci Res 1986; 3: 531–539.

    PubMed  Article  CAS  Google Scholar 

  18. Shadmehr R, Holcomb HH. Neural correlates of motor memory consolidation. Science 1997; 277: 821–825.

    PubMed  Article  CAS  Google Scholar 

  19. Hikosaka O, Rand MK, Nakamura K, Miyachi S, Kitaguchi K, Sakai K, et al. Long-term retention of motor skill in macaque monkeys and humans. Exp Brain Res 2002; 147: 494–504.

    PubMed  Article  CAS  Google Scholar 

  20. Obayashi S, Tanaka M, Iriki A. Subjective image of invisible hand coded by monkey intraparietal neurons. Neuroreport 2000; 11: 3499–3505.

    PubMed  Article  CAS  Google Scholar 

  21. Obayashi S, Suhara T, Kawabe K, Okauchi T, Maeda J, Akine Y, et al. Functional brain mapping of monkey tool use. Neuroimage 2001; 14: 853–861.

    PubMed  Article  CAS  Google Scholar 

  22. Thut G, Cook ND, Regard M, Leenders KL, Halsband U, Landis T. Intermanual transfer of proximal and distal motor engrams in humans. Exp Brain Res 1996; 108: 321–327.

    PubMed  Article  CAS  Google Scholar 

  23. Taub E, Goldberg LA. Prism adaptation: control of intermanual transfer by distribution of practice. Science 1973; 180: 755–757.

    PubMed  Article  CAS  Google Scholar 

  24. Parlow SE, Dewey D. The temporal locus of transfer of training between hands: an interference study. Behav Brain Res 1991; 46: 1–8.

    PubMed  Article  CAS  Google Scholar 

  25. Thut G, Halsband U, Roelcke U, Nienhusmeier M, Missimer J, Maguire RP, et al. Intermanual transfer of training: blood flow correlates in the human brain. Behav Brain Res 1997; 89: 129–134.

    PubMed  Article  CAS  Google Scholar 

  26. Ammons RB, Farr RG, Bloch E, Neumann E, Dey M, Marion R, et al. Long-term retention of perceptual motor skills. J Exp Psychol 1958; 55: 318–328.

    PubMed  Article  CAS  Google Scholar 

  27. Stoddard J, Vaid J. Asymmetries in intermanual transfer of maze learning in right- and left-handed adults. Neuropsychologia 1996; 34: 605–608.

    PubMed  Article  CAS  Google Scholar 

  28. Wyke M. Postural arm drift associated with brain lesions in man. An experimental analysis. Arch Neurol 1966; 15: 329–334.

    PubMed  CAS  Google Scholar 

  29. Rand MK, Hikosaka O, Miyachi S, Lu X, Miyashita K. Characteristics of a long-term procedural skill in the monkey. Exp Brain Res 1998; 118: 293–297.

    PubMed  Article  CAS  Google Scholar 

  30. Obayashi S, Suhara T, Kawabe K, Okauchi T, Maeda J, Nagai Y, et al. Fronto-parieto-cerebellar interaction associated with intermanual transfer of monkey tool-use learning. Neurosci Lett 2003; 339: 123–126.

    PubMed  Article  CAS  Google Scholar 

  31. Jenkins IH, Brooks DJ, Nixon PD, Frackowiak RS, Passingham RE. Motor sequence learning: a study with positron emission tomography. J Neurosci 1994; 14: 3775–3790.

    PubMed  CAS  Google Scholar 

  32. Kim SG, Ugurbil K, Strick PL. Activation of a cerebellar output nucleus during cognitive processing. Science 1994; 265: 949–951.

    PubMed  Article  CAS  Google Scholar 

  33. Imamizu H, Miyauchi S, Tamada T, Sasaki Y, Takino R, Putz B, et al. Human cerebellar activity reflecting an acquired internal model of a new tool. Nature 2000; 403: 192–195.

    PubMed  Article  CAS  Google Scholar 

  34. Decety J, Sjoholm H, Ryding E, Stenberg G, Ingvar DH. The cerebellum participates in mental activity: tomographic measurements of regional cerebral blood flow. Brain Res 1990; 535: 313–317.

    PubMed  Article  CAS  Google Scholar 

  35. Lotze M, Montoya P, Erb M, Hulsmann E, Flor H, Klose U, et al. Activation of cortical and cerebellar motor areas during executed and imagined hand movements: an fMRI study. J Cogn Neurosci 1999; 11: 491–501.

    PubMed  Article  CAS  Google Scholar 

  36. Shadmehr R, Holcomb HH. Neural correlates of motor memory consolidation. Science 1997; 277: 821–825.

    PubMed  Article  CAS  Google Scholar 

  37. Kawato M, Furukawa K, Suzuki R. A hierarchical neural-network model for control and learning of voluntary movement. Biol Cybern 1987; 57: 169–85.

    PubMed  Article  CAS  Google Scholar 

  38. Middleton FA, Strick PL. Cerebellar projections to the prefrontal cortex of the primate. J Neurosci 2001; 21: 700–712.

    PubMed  CAS  Google Scholar 

  39. Leiner HC, Leiner AL, Dow RS. The human cerebro-cerebellar system: its computing, cognitive, and language skills. Behav Brain Res 1991; 44: 113–128.

    PubMed  Article  CAS  Google Scholar 

  40. Elliott R, Dolan RJ. Activation of different anterior cingulate foci in association with hypothesis testing and response selection. Neuro-image 1998; 8: 17–29.

    PubMed  CAS  Google Scholar 

  41. Thach WT. Context-response linkage. Int Rev Neurobiol 1997; 41: 599–611.

    PubMed  CAS  Article  Google Scholar 

  42. Horwitz B, Deiber MP, Ibanez V, Sadato N, Hallett M. Correlations between reaction time and cerebral blood flow during motor preparation. Neuroimage 2000; 12: 434–441.

    PubMed  Article  CAS  Google Scholar 

  43. Rao SM, Bobholz JA, Hammeke TA, Rosen AC, Woodley SJ, Cunningham JM, et al. Functional MRI evidence for subcortical participation in conceptual reasoning skills. Neuroreport 1997; 8: 1987–1993.

    PubMed  Article  CAS  Google Scholar 

  44. Lu X, Hikosaka O, Miyachi S. Role of monkey cerebellar nuclei in skill for sequential movement. J Neurophysiol 1998; 79: 2245–2254.

    PubMed  CAS  Google Scholar 

  45. Nixon PD, Passingham RE. The cerebellum and cognition: cerebellar lesions impair sequence learning but not conditional visuomotor learning in monkeys. Neuropsychologia 2000; 38: 1054–1072.

    PubMed  Article  CAS  Google Scholar 

  46. Hovland CI. Human learning and retention. In: Stevens SS, editor. Handbook of Experimental Psychology. New York,: Wiley, 1951: 613–689.

    Google Scholar 

  47. Krebs HI, Brashers-Krug T, Rauch SL, Savage CR, Hogan N, Rubin RH, et al. Robot-aided functional imaging: application to a motor learning study. Hum Brain Mapp 1998; 6: 59–72.

    PubMed  Article  CAS  Google Scholar 

  48. Raichle ME, Fiez JA, Videen TO, MacLeod AM, Pardo JV, Fox PT, et al. Practice-related changes in human brain functional anatomy during nonmotor learning. Cereb Cortex 1994; 4: 8–26.

    PubMed  Article  CAS  Google Scholar 

  49. Sakai K, Hikosaka O, Miyauchi S, Takino R, Sasaki Y, Putz B. Transition of brain activation from frontal to parietal areas in visuomotor sequence learning. J Neurosci 1998; 18: 1827–1840.

    PubMed  CAS  Google Scholar 

  50. Smith LH. The responsibility of psychiatry. Proc Annu Meet Am Psychopathol Assoc 1951; 61: 121–126.

    Google Scholar 

  51. Lassonde M, Sauerwein HC, Lepore F. Extent and limits of callosal plasticity: presence of disconnection symptoms in callosal agenesis. Neuropsychologia 1995; 33: 989–1007.

    PubMed  Article  CAS  Google Scholar 

  52. Hunter M, Ettlinger G, Maccabe JJ. Intermanual transfer in the monkey as a function of amount of callosal sparing. Brain Res 1975; 93: 223–240.

    PubMed  Article  CAS  Google Scholar 

  53. Kosslyn SM, Thompson WL, Wraga M, Alpert NM. Imagining rotation by endogenous versus exogenous forces: distinct neural mechanisms. Neuroreport 2001; 12: 2519–2525.

    PubMed  Article  CAS  Google Scholar 

  54. Sirigu A, Duhamel JR, Cohen L, Pillon B, Dubois B, Agid Y. The mental representation of hand movements after parietal cortex damage. Science 1996; 273: 1564–1568.

    PubMed  Article  CAS  Google Scholar 

  55. van Mier H, Tempel LW, Perlmutter JS, Raichle ME, Petersen SE. Changes in brain activity during motor learning measured with PET: effects of hand of performance and practice. J Neurophysiol 1998; 80: 2177–2199.

    PubMed  Google Scholar 

  56. Luchins AS, Luchins EH. New experimental attempts at preventing mechanization in problem solving. J Gen Psychol, 1950; 42: 279–297.

    Google Scholar 

  57. Dunker K. On problem solving. Psychological Monographs, 58: 5, whole No. 270, 1945.

    Google Scholar 

  58. Thut G, Halsband U, Roelcke U, Nienhusmeier M, Missimer J, Maguire RP, Regard M, Landis T, Leenders KL. Intermanual transfer of training: blood flow correlates in the human brain. Behav Brain Res 1997; 89: 129–134.

    PubMed  Article  CAS  Google Scholar 

  59. Obayashi S, Suhara T, Nagai Y, Maeda J, Hihara S, Iriki A. Macaque prefrontal activity associated with extensive tool use. Neuroreport 2002; 13: 2349–2354.

    PubMed  Article  Google Scholar 

  60. Obayashi S, Suhara T, Nagai Y, Okauchi T, Maeda J, Iriki A. Monkey brain areas underlying remote-controlled operation. Eur J Neurosci 2004; 19: 1397–1407.

    PubMed  Article  Google Scholar 

  61. Hihara S, Obayashi S, Tanaka M, Iriki A. Rapid learning of sequential tool use by macaque monkeys. Physiol Behav 2003; 78: 427–434.

    PubMed  Article  CAS  Google Scholar 

  62. Beck BB. Animal Tool Behavior: The Use and Manufacture of Tools by Animals. New York, NY,: Gerland STPM Press, 1980.

    Google Scholar 

  63. Miyashita Y, Hayashi T. Neural representation of visual objects: encoding and top-down activation. Curr Opin Neurobiol 2000; 10: 187–194.

    PubMed  Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeru Obayashi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Obayashi, S. Possible mechanism for transfer of motor skill learning: implication of the cerebellum. Cerebellum 3, 204–211 (2004). https://doi.org/10.1080/14734220410018977

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1080/14734220410018977

Keywords

  • Cerebellum
  • intermanual transfer of learning
  • procedural memory
  • prefrontal cortex
  • parietal cortex
  • macaque monkeys