Skip to main content
Log in

Expression and possible role of neuronal calcium sensor-1 in the cerebellum

  • Scientific Papers
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Neuronal calcium sensor-1 (NCS-1) is a member of EF-hand calcium-binding protein superfamily, which is considered to modulate synaptic transmission and plasticity. In this mini-review, we first summarize distribution of NCS-1 in the cerebellum. NCS-1 is mainly detected in postsynaptic sites, such as somata and dendrites of Purkinje cells, stellate/basket cells and granule cells. In addition, GABAergic inhibitory stellate/basket cell axon terminals also contain NCS-1. Secondly, we describe cerebellar compartmentation defined by NCS-1. The NCS-1 immunostaining displayed characteristic parasagittal-banding pattern in the Purkinje cell layer and molecular layer, whereas there were no apparent bands in the granule cell layer. The alternating positively and negatively NCS-1-labeled Purkinje cell clusters contributed to this cerebellar compartmentation. In contrast, stellate/ basket cells were uniformly NCS-1-positive throughout the cerebellum. Interestingly, NCS-1 and zebrin II exhibited a similar parasagittal-banding pattern. But it is noteworthy that NCS-1-negative/zebrin 11-positive Purkinje cell clusters were detected selectively in anterior lobule vermis and paraflocculus. These results suggest that NCS-1 defines a novel pattern of cerebellar cortical compartmentation. Lastly, we describe recent data suggesting some relationship between NCS-1 and cerebellar longterm depression-related molecules, and discuss the possible role of NCS-1 in the cerebellum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Braunewell KH, Gundelfinger ED. Intracellular neuronal calcium sensor proteins: a family of EF-hand calcium-binding proteins in search of a function. Cell Tissue Res 1999; 295: 1–12.

    Article  PubMed  CAS  Google Scholar 

  2. Bourne Y, Dannenberg J, Pollmann V, Marchot P, Pongs O. Immunocytochemical localization and crystal structure of human frequenin (neuronal calcium sensor 1). J Biol Chem 2001; 276: 11949–11955.

    Article  PubMed  CAS  Google Scholar 

  3. Burgoyne RD, Weiss JL. The neuronal calcium sensor family of Ca2+-binding proteins. Biochem J 2001; 353: 1–12.

    Article  PubMed  CAS  Google Scholar 

  4. Ikura M. Calcium binding and conformational response in EF-hand proteins. Trends Biochem Sci 1996; 21: 14–17.

    PubMed  CAS  Google Scholar 

  5. Schaad NC, De Castro E, Nef S, Hegi S, Hinrichsen R, Martone ME, Ellisman MH, Sikkink R, Rusnak F, Sygush J, Nef P. Direct modulation of calmodulin targets by the neuronal calcium sensor NCS-1. Proc Natl Acad Sci USA 1996; 93: 9253–9258.

    Article  PubMed  CAS  Google Scholar 

  6. Pongs O, Lindemeier J, Zhu XR, Theil T, Engelkamp D, Krah-Jentgens I, Lambrecht HG, Koch KW, Schwemer J, Rivosecchi R. Frequenin-a novel calcium-binding protein that modulates synaptic efficacy in the Drosophila nervous system. Neuron 1993; 11: 15–28.

    Article  PubMed  CAS  Google Scholar 

  7. Olafsson P, Wang T, Lu B. Molecular cloning and functional characterization of the Xenopus Ca(2+)-binding protein frequenin. Proc Natl Acad Sci USA 1995; 92: 8001–8005.

    Article  PubMed  CAS  Google Scholar 

  8. Gomez M, De Castro E, Guarin E, Sasakura H, Kuhara A, Mori I, Bartfai T, Bargmann CI, Nef P. Ca2+ signaling via the neuronal calcium sensor-1 regulates associative learning and memory in C. elegans. Neuron 2001; 30: 241–248.

    Article  PubMed  CAS  Google Scholar 

  9. Tsujimoto T, Jeromin A, Saitoh N, Roder JC, Takahashi T. Neuronal calcium sensor 1 and activity-dependent facilitation of P/Q-type calcium currents at presynaptic nerve terminals. Science 2002; 295: 2276–2279.

    Article  PubMed  CAS  Google Scholar 

  10. Sippy T, Cruz-Martin A, Jeromin A, Schweizer FE. Acute changes in short-term plasticity at synapses with elevated levels of neuronal calcium sensor-1. Nat Neurosci 2003; 6(10): 1031–1038.

    Article  PubMed  CAS  Google Scholar 

  11. Olafsson P, Soares HD, Herzog KH, Wang T, Morgan JI, Lu B. The Ca2+ binding protein, frequenin is a nervous system-specific protein in mouse preferentially localized in neurites. Brain Res Mol Brain Res 1997; 44: 73–82.

    Article  PubMed  CAS  Google Scholar 

  12. Martone ME, Edelmann VM, Ellisman MH, Nef P. Cellular and subcellular distribution of the calcium-binding protein NCS-1 in the central nervous system of the rat. Cell Tissue Res 1999; 295: 395–407.

    Article  PubMed  CAS  Google Scholar 

  13. Bergmann M, Grabs D, Roder J, Rager G, Jeromin A. Differential expression of neuronal calcium sensor-1 in the developing chick retina. J Comp Neurol 2002; 449: 231–240.

    Article  PubMed  CAS  Google Scholar 

  14. Wilkinson BL, Jeromin A, Roder J, Hyson RL. Activity-dependent regulation of the subcellular localization of neuronal calcium sensor-1 in the avian cochlear nucleus. Neuroscience 2003; 117: 957–964.

    Article  PubMed  CAS  Google Scholar 

  15. Paterlini M, Revilla V, Grant AL, Wisden W. Expression of the neuronal calcium sensor protein family in the rat brain. Neuroscience 2000; 99: 205–216.

    Article  PubMed  CAS  Google Scholar 

  16. Jinno S, Jeromin A, Roder J, Kosaka T. Immunocytochemical localization of neuronal calcium sensor-1 in the hippocampus and cerebellum of the mouse, with special reference to presynaptic terminals. Neuroscience 2002; 113: 449–461.

    Article  PubMed  CAS  Google Scholar 

  17. Jinno S, Jeromin A, Roder J, Kosaka T. Compartmentation of the mouse cerebellar cortex by neuronal calcium sensor-1. J Comp Neurol 2003; 458: 412–424.

    Article  PubMed  CAS  Google Scholar 

  18. Voogd J, Jaarsma D, Marani E. The cerebellum: chemoarchitecture and anatomy. In: Swanson LW, Bjöorklund A, Hökfelt T, editors. Handbook of Chemical Neuroanatomy. Elsevier, Amsterdam, 1996: 1–369.

    Google Scholar 

  19. Garcia-Segura LM, Baetens D, Roth J, Norman AW, Orci L. Immunohistochemical mapping of calcium-binding protein immunoreactivity in the rat central nervous system. Brain Res 1984; 296: 75–86.

    Article  PubMed  CAS  Google Scholar 

  20. Schneeberger PR, Norman AW, Heizmann CW. Parvalbumin and vitamin D-dependent calcium-binding protein (Mr 28,000): comparison of their localization in the cerebellum of normal and rachitic rats. Neurosci Lett 1985; 59: 97–103.

    Article  PubMed  CAS  Google Scholar 

  21. Celio MR, Heizmann CW. Calcium-binding protein parvalbumin as a neuronal marker. Nature 1981; 293: 300–302.

    Article  PubMed  CAS  Google Scholar 

  22. Brown B, Epema A, Marani E. Topography of acetylcholinesterase in the developing rabbit and cat cerebellum. In: Topographic histochemistry of the cerebellum. 5′-nucleotidase, acetylcholinesterase, Immunology of FAL. Prog Histochem Cytochem 1986; 16/ 4: 117–127.

    Google Scholar 

  23. Rogers JH. Immunoreactivity for calretinin and other calciumbinding proteins in cerebellum. Neuroscience 1989; 3: 711–721.

    Article  Google Scholar 

  24. Celio MR. Calbindin D-28k and parvalbumin in the rat nervous system. Neuroscience 1990; 35: 375–475.

    Article  PubMed  CAS  Google Scholar 

  25. Oberdick J, Baader SL, Schilling K. From zebra stripes to postal zones: deciphering patterns of gene expression in the cerebellum. Trends Neurosci 1998; 21: 383–390.

    Article  PubMed  CAS  Google Scholar 

  26. Scott TG. A unique pattern of localization in the cerebellum. Nature 1963; 200: 793.

    Article  PubMed  CAS  Google Scholar 

  27. Scott TG. A unique pattern of localization within the cerebellum of the mouse. J Comp Neurol 1964; 122: 1–8.

    Article  Google Scholar 

  28. Ramon-Molier E. Acetylthiocholinesterase distribution in the brainstem of the cat. Ergebn Anat 1972; 46: 1–52.

    Google Scholar 

  29. Marani E, Voogd J. An acetylcholinesterase band pattern in the molecular layer of the cat cerebellum. J Anat 1977; 124: 335–345.

    PubMed  CAS  Google Scholar 

  30. Ingram VI, Ogren MP, Chatot CL, Gossels JM, Owens BB. Diversity among Purkinje cells in the monkey cerebellum. Proc Natl Acad Sci USA 1985; 82: 7131–7135.

    Article  PubMed  CAS  Google Scholar 

  31. Hess DT, Voogd J. Chemoarchitectonic zonation of the monkey cerebellum. Brain Res 1986; 369: 383–387.

    Article  PubMed  CAS  Google Scholar 

  32. Chan-Palay V, Nilaver G, Palay SL, Beinfeld MC, Zimmerman EA, Wu J-Y, O’Donohue TL. Chemical heterogeneity in cerebellar Purkinje cells: existence and coexistence of glutamic acid decarboxylase-like and motilin-like immunoreactivities. Proc Natl Acad Sci USA 1981; 78: 7787–7791.

    Article  PubMed  CAS  Google Scholar 

  33. Chan-Palay V, Lin CT, Palay S, Yamamoto M, Wu J-Y. Taurine in the mammalian cerebellum: demonstration by autoradiography with [3H] taurine and immunocytochemistry with antibodies against the taurine-synthesizing enzyme, cysteine-sulfinic acid decarboxylase. Proc Natl Acad Sci USA 1982; 79: 2695–2699.

    Article  PubMed  CAS  Google Scholar 

  34. Chan-Palay V, Palay SL, Wu J-Y. Sagittal cerebellar microbands of taurine neurons: immunocytochemical demonstration by using antibodies against the taurine synthesizing enzyme cysteine sulfinic acid decarboxylase. Proc Natl Acad Sci USA 1982; 79: 4221–4225.

    Article  PubMed  CAS  Google Scholar 

  35. Hawkes R, Colonnier M, Leclerc N. Monoclonal antibodies reveal sagittal banding in the rodent cerebellar cortex. Brain Res 1985; 333: 359–365.

    Article  PubMed  CAS  Google Scholar 

  36. Hawkes R, Leclerc N. Antigenic map of the rat cerebellar cortex: the distribution of parasagittal bands as revealed by monoclonal anti-Purkinje cell antibody mabQ113. J Comp Neurol 1987; 256: 29–41.

    Article  PubMed  CAS  Google Scholar 

  37. Albin RL, Gilman S. Parasagittal zonation of GABA-B receptors in molecular layer of rat cerebellum. Eur J Pharmacol 1989; 173: 113–114.

    Article  PubMed  CAS  Google Scholar 

  38. Brochu G, Maler L, Hawkes R. Zebrin II: a polypeptide antigen expressed selectively by Purkinje cells reveals compartments in rat and fish cerebellum. J Comp Neurol 1990; 291: 538–552.

    Article  PubMed  CAS  Google Scholar 

  39. Eisenman LM, Hawkes R. Antigenic compartmentation in the mouse cerebellar cortex: zebrin and HNK-1 reveal a complex, overlapping molecular topography. J Comp Neurol 1993; 335: 586–605.

    Article  PubMed  CAS  Google Scholar 

  40. Chen S, Hillman DE. Compartmentation of the cerebellar cortex by protein kinase C delta. Neuroscience 1993; 56: 177–188.

    Article  PubMed  CAS  Google Scholar 

  41. Leclerc N, Schwarting GA, Herrup K, Hawkes R, Yamamoto M. Compartmentation in mammalian cerebellum: Zebrin II and P-path antibodies define three classes of sagittally organized bands of Purkinje cells. Proc Natl Acad Sci USA 1992; 89: 5006–5010.

    Article  PubMed  CAS  Google Scholar 

  42. Armstrong CL, Krueger-Naug AM, Currie RW, Hawkes R. Expression of heat-shock protein Hsp25 in mouse Purkinje cells during development reveals novel features of cerebellar compartmentation. J Comp Neurol 2001; 429: 7–21.

    Article  PubMed  CAS  Google Scholar 

  43. Jansen J, Brodai A. Experimental studies on the intrinsic fibers of the cerebellum. II. The cortico-nuclear projection. J Comp Neurol 1940; 73: 267–321.

    Article  Google Scholar 

  44. Goodman DC, Hellitt RE, Welch RB. Patterns of localization in the cerebellar corticonuclear projections of the albino rat. J Comp Neurol 1963; 121: 51–68.

    Article  PubMed  CAS  Google Scholar 

  45. Haines DE, Patrick GW, Satrulee P. Organization of cerebellar corticonuclear fiber system. In: Palay SL, Chan-Palay V, editors. The Cerebellum. Berlin: New Vistas, Springer, 1982: 320–367.

    Google Scholar 

  46. Voogd J. The importance of fiber connections in the comparative anatomy of the mammalian cerebellum. In: Llinas R, editor. Neurobiology of Cerebellar Evolution and Development. Chicago: American Medical Association, 1969: 493–514.

    Google Scholar 

  47. Gravel C, Eisenman LM, Sasseville R, Hawkes R. Parasagittal organization of the rat cerebellar cortex: direct correlation between antigenic Purkinje cell bands revealed by mabQ113 and the organization of the olivocerebellar projection. J Comp Neurol 1987; 265: 294–310.

    Article  PubMed  CAS  Google Scholar 

  48. Gravel C, Hawkes R. Parasagittal organization of the rat cerebellar cortex: direct comparison of Purkinje cell compartments and the organization of the spinocerebellar projection. J Comp Neurol 1990; 291: 79–102.

    Article  PubMed  CAS  Google Scholar 

  49. Oberdick J, Schilling K, Smeyne RJ, Corbin JG, Bocchiaro C, Morgan JI. Control of segment-like patterns of gene expression in the mouse cerebellum. Neuron 1993; 10: 1007–1018.

    Article  PubMed  CAS  Google Scholar 

  50. Chedotal A, Pourquie O, Ezan F, San Clemente H, Sotelo C. BEN as a presumptive target recognition molecule during the development of the olivocerebellar system. J Neurosci 1996; 16: 3296–3310.

    PubMed  CAS  Google Scholar 

  51. Poulain C, Ferrus A, Mallart A. Modulation of type A K+ current in Drosophila larval muscle by internal Ca2+; effects of the overexpression of frequenin. Pflugers Arch 1994; 427: 71–79.

    Article  PubMed  CAS  Google Scholar 

  52. Angaut-Petit D, Toth P, Rogero O, Faille L, Tejedor FJ, Ferrus A. Enhanced neurotransmitter release is associated with reduction of neuronal branching in a Drosophila mutant overexpressing frequenin. Eur J Neurosci 1998; 10: 423–434.

    Article  PubMed  CAS  Google Scholar 

  53. Chen XL, Zhong ZG, Yokoyama S, Bark C, Meister B, Berggren PO, Roder J, Higashida H, Jeromin A. Overexpression of rat neuronal calcium sensor-1 in rodent NG108-15 cells enhances synapse formation and transmission. J Physiol 2001; 532: 649–659.

    Article  PubMed  CAS  Google Scholar 

  54. Zucker RS. NCS-1 stirs somnolent synapses. Nat Neurosci 2003; 6: 1006–1008.

    Article  PubMed  CAS  Google Scholar 

  55. Hansel C, Linden DJ, D’Angelo E. Beyond parallel fiber LTD: the diversity of synaptic and non-synaptic plasticity in the cerebellum. Nat Neurosci 2001; 4: 467–475.

    PubMed  CAS  Google Scholar 

  56. Thompson RF. The neurobiology of learning and memory. Science 1986; 233: 941–947.

    Article  PubMed  CAS  Google Scholar 

  57. Ito M. Long-term depression. Annu Rev Neurosci 1989; 12: 85–102.

    Article  PubMed  CAS  Google Scholar 

  58. Ito M. The molecular organization of cerebellar long-term depression. Nat Rev Neurosci 2002; 3: 896–902.

    Article  PubMed  CAS  Google Scholar 

  59. Crepel F, Jaillard D. Protein kinases, nitric oxide and long-term depression of synapses in the cerebellum. Neuroreport 1990; 1: 133–136.

    Article  PubMed  CAS  Google Scholar 

  60. Daniel H, Hemart N, Jaillard D, Crepel F. Long-term depression requires nitric oxide and guanosine 3′: 5′ cyclic monophosphate production in rat cerebellar Purkinje cells. Eur J Neurosci 1993; 5: 1079–1082.

    Article  PubMed  CAS  Google Scholar 

  61. Daniel H, Levenes C, Crepel F. Cellular mechanisms of cerebellar LTD. Trends Neurosci 1998; 21: 401–407.

    Article  PubMed  CAS  Google Scholar 

  62. Crepel F, Krupa M. Activation of protein kinase C induces a long term depression of glutamate sensitivity of cerebellar Purkinje cells. An in vitro study. Brain Res 1988; 458: 397–401.

    Article  PubMed  CAS  Google Scholar 

  63. Linden DJ, Connor JA. Long-term depression of glutamate currents in cultured cerebellar Purkinje neurons does not require nitric oxide signaling. Eur J Neurosci 1992; 4: 10–15.

    Article  PubMed  Google Scholar 

  64. Weiss JL, Burgoyne RD. Voltage-independent inhibition of P/Q-type Ca2+ channels in adrenal chromaffin cells via a neuronal Ca2+ sensor-1-dependent pathway involves Src family tyrosine kinase. J Biol Chem 2001; 276: 44804–44811.

    Article  PubMed  CAS  Google Scholar 

  65. Rousset M, Cens T, Gavarini S, Jeromin A, Charnet P. Downregulation of voltage-gated Ca2+ channels by neuronal calcium sensor-1 is beta subunit-specific. J Biol Chem. 2003; 278: 7019–7026.

    Article  PubMed  CAS  Google Scholar 

  66. Wang SS, Denk W, Hausser M. Coincidence detection in single dendritic spines mediated by calcium release. Nat Neurosci 2000; 3: 1266–1273.

    Article  PubMed  CAS  Google Scholar 

  67. Hawkes R, Turner RW. Compartmentation of NADPH-diaphorase activity in the mouse cerebellar cortex. J Comp Neurol 1994; 346: 499–516.

    Article  PubMed  CAS  Google Scholar 

  68. Hope BT, Vincent SR. Histochemical characterization of neuronal NADPH-diaphorase. J Histochem Cytochem 1989; 37: 653–661.

    PubMed  CAS  Google Scholar 

  69. Wassef M, Cholley B, Heizmann CW, Sotelo C. Development of the olivocerebellar projection in the rat: II. Matching of the developmental compartmentations of the cerebellum and inferior olive through the projection map. J Comp Neurol 1992; 323: 537–550.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shozo Jinno.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jinno, S., Jeromin, A. & Kosaka, T. Expression and possible role of neuronal calcium sensor-1 in the cerebellum. The Cerebellum 3, 83–88 (2004). https://doi.org/10.1080/14734220310025187

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1080/14734220310025187

Keywords

Navigation