Skip to main content
Log in

Roles of the cerebellum in pursuit-vestibular interactions

  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

This mini-review focuses on cerebellar roles in on-line control of smooth-pursuit eye movements during vestibular stimulation in primates. The smooth-pursuit system is necessary to track smoothly moving targets and must interact with the vestibular system during movement of the head and/or whole body to maintain the precision of eye movements in space (i.e. gaze movements). This interaction requires calculation of gaze velocity commands that match the eye velocity in space to the actual target velocity. Two cerebellar regions, the floccular lobe that consists of the flocculus and ventral paraflocculus, and the dorsal vermis, are known to be involved in smooth-pursuit. However, potential differences in their involvement are incompletely understood. To understand their roles, in particular whether the output of these regions codes gaze velocity or eye velocity, simple-spike activity of Purkinje (P-) cells was examined during smooth-pursuit and pursuit-vestibular interaction tasks in various directions in head-restrained monkeys. The results showed differences in discharge characteristics of vertical and horizontal P-cells within the floccular lobe and between the floccular lobe and dorsal vermis. These differences and other available evidence suggest that the dorsal vermis is involved more in the control of gaze movement whereas the floccular lobe primarily controls eye movement (in the orbit) as a component of the oculomotor neural integrator. Smooth-pursuit without vestibular stimulation cannot dissociate eye movement from gaze movement. To understand the cerebellar role in various aspects of smooth tracking of targets moving in the three dimensional space, more information is needed particularly on how the above mentioned two regions along with the dorsal paraflocclus and underlying deep cerebellar nuclei are involved in vergence tracking, how the cerebellum is involved in prediction and perception of target motion, and whether complex-spike discharge is involved in a fast adaptive process that may be used for prediction in smooth ocular tracking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Leigh RJ, Zee DS. The Neurology of Eye Movements. 3rd edn. New York: Oxford University Press, 1999: 4–197.

    Google Scholar 

  2. Robinson DA. A model of cancellation of the vestibulo-ocular reflex. In: Lennerstrand G, Zee DS, Keller EL, editors. Functional Basis of Ocular Motility Disorders. Oxford: Pergamon Press, 1982: 5–13.

    Google Scholar 

  3. Yasui S, Young LR. Perceived visual motion as effective stimulus to pursuit eye movement system. Science 1975; 190: 906–908.

    Article  PubMed  CAS  Google Scholar 

  4. Stone LS, Beutter BR. Visual motion integration for perception and pursuit. Perception 2000; 29: 771–787.

    Article  PubMed  CAS  Google Scholar 

  5. Robinson DA. Control of eye movements. In: Brookhart JM, Mountcastle JM editors. Handbook of Physiology, Vol. 2, Part 2. Bethesda: American Physiological Society, 1981: 1275–1320.

    Google Scholar 

  6. Lisberger SG, Fuchs AF. Role of primate flocculus during rapid behavioral modification of vestibuloocular reflex. I. Purkinje cell activity during visually guided horizontal smooth-pursuit eye movements and passive head rotation. J Neurophysiol 1978; 41: 733–763.

    PubMed  CAS  Google Scholar 

  7. Miles FA, Fuller JH, Braitman DJ, et al. Long-term adaptive changes in primate vestibuloocular reflex. III. Electrophysiological observations in flocculus of normal monkeys. J Neurophysiol 1980; 43: 1437–1476.

    PubMed  CAS  Google Scholar 

  8. Krauzlis RJ, Lisberger SG. Directional organization of eye movement and visual signals in the floccular lobe of the monkey cerebellum. Exp Brain Res 1996; 109: 289–302.

    Article  PubMed  CAS  Google Scholar 

  9. Stone LS, Lisberger SG. Visual responses of Purkinje cells in the cerebellar flocculus during smooth-pursuit eye movements in monkeys. I. Simple spikes. J Neurophysiol 1990; 63: 1241–1261.

    PubMed  CAS  Google Scholar 

  10. Kase M, Noda H, Suzuki DA, et al. Target velocity signals of visual tracking in vermal Purkinje cells of the monkey. Science 1979; 205: 717–720.

    Article  PubMed  CAS  Google Scholar 

  11. Suzuki DA, Keller EL. The role of the posterior vermis of monkey cerebellum in smooth-pursuit eye movement control. I. Eye and head movement-related activity. J Neurophysiol 1988; 59: 1–18.

    PubMed  CAS  Google Scholar 

  12. Sato H, Noda H. Posterior vermal Purkinje cells in macaques responding during saccades, smooth pursuit, chair rotation and/or optokinetic stimulation. Neurosci Res 1992; 12: 583–595.

    Article  PubMed  CAS  Google Scholar 

  13. Robinson FR, Fuchs AF. The role of the cerebellum in voluntary eye movements. Ann Rev Neurosci 2001; 24: 981–1004.

    Article  PubMed  CAS  Google Scholar 

  14. Fukushima K, Fukushima J, Kaneko CRS, et al. Vertical Purkinje cells of the monkey floccular lobe: simple-spike activity during pursuit and passive whole body rotation. J Neurophysiol 1999; 82: 787–803.

    PubMed  CAS  Google Scholar 

  15. Shinmei Y, Yamanobe T, Fukushima J, et al. Purkinje cells of the cerebellar dorsal vermis in the monkey: simple-spike activity during pursuit and passive whole body rotation. J Neurophysiol 2002; 87: 1836–1849.

    PubMed  Google Scholar 

  16. Andersen RA, Snyder LH, Bradley DC, et al. Multimodal representation of space in the posterior parietal cortex and its use in planning movements. Ann Rev Neurosci 1997; 20: 303–330.

    Article  PubMed  CAS  Google Scholar 

  17. Fukushima K. Corticovestibular interactions: anatomy, electrophysiology, and functional considerations. Exp Brain Res 1997; 117: 1–16.

    Article  PubMed  CAS  Google Scholar 

  18. Lisberger SG, Morris EJ, Tychsen L. Visual motion processing and sensory-motor integration for smooth pursuit eye movements. Ann Rev Neurosci 1987; 10: 97–129.

    Article  PubMed  CAS  Google Scholar 

  19. Kawano K. Ocular tracking: behavior and neurophysiology. Current Opinion in Neurobiol 1999; 9: 467–473.

    Article  CAS  Google Scholar 

  20. Ito M. The Cerebellum and Neural Control. New York: Raven Press, 1984: 133–374.

    Google Scholar 

  21. Nagao S, Kitamura T, Nakamura N, et al. Location of efferent terminals of the primate flocculus and ventral paraflocculus revealed by anterograde axonal transport methods. Neurosci Res 1997; 27: 257–269.

    Article  PubMed  CAS  Google Scholar 

  22. Dietrichs E. The cerebellar corticonuclear and nucleocortical projections in the cat as studied with anterograde and retrograde transport of horseradish peroxidase. IV. The paraflocculus. Exp Brain Res 1981; 44: 235–242.

    Article  PubMed  CAS  Google Scholar 

  23. Fukushima K, Kaneko CRS, Fuchs AF. The neuronal substrate of integration in the oculomotor system. Prog Neurobiol 1992; 39: 609–639.

    Article  PubMed  CAS  Google Scholar 

  24. Fukushima K. The interstitial nucleus of Cajal and its role in the control of movements of head and eyes. Prog Neurobiol 1987; 29: 107–192.

    Article  PubMed  CAS  Google Scholar 

  25. Crawford JD, Cadera W, Vilis T. Generation of torsional and vertical eye position signals by the interstitial nucleus of Cajal. Science 1991; 252: 1551–1553.

    Article  PubMed  CAS  Google Scholar 

  26. Fukushima K, Ohashi T, Fukushima J. Effects of chemical deactivation of the interstitial nucleus of Cajal on the vertical vestibulo-collic reflex induced by pitch rotation in alert cats. Neurosci Res 1994; 20: 281–286.

    Article  PubMed  CAS  Google Scholar 

  27. Klier EM, Wang H, Constantin AG, et al. Midbrain control of three-dimensional head orientation. Science 2002; 295: 1314–1316.

    Article  PubMed  CAS  Google Scholar 

  28. Fukushima K, Kaneko CRS. Vestibular integrators in the oculomotor system. Neurosci Res 1995; 22: 249–258.

    Article  PubMed  CAS  Google Scholar 

  29. McAvoy MG, Gottlieb JP, Bruce CJ. Smooth pursuit eye movement representation in the primate frontal eye field. Cerebral Cortex 1991; 1: 95–102.

    Article  Google Scholar 

  30. Tian J, Lynch JC. Corticocortical input to smooth and saccadic eye movement subregions of the frontal eye field in cebus monkeys. J Neurophysiol 1996; 76: 2754–2771.

    PubMed  CAS  Google Scholar 

  31. Fukushima K, Sato T, Fukushima J, et al. Activity of smooth pursuit-related neurons in the monkey periarcuate cortex during pursuit and passive whole body rotation. J Neurophysiol 2000; 83: 563–587.

    PubMed  CAS  Google Scholar 

  32. Keller EL, Heinen SJ. Generation of smooth-pursuit eye movements: neuronal mechanisms and pathways. Neurosci Res 1991; 11: 79–107.

    Article  PubMed  CAS  Google Scholar 

  33. Zee DS, Yamazaki A, Butler PH, et al. Effects of ablation of flocculus and paraflocculus on eye movements in primate. J Neurophysiol 1981; 46: 878–899.

    PubMed  CAS  Google Scholar 

  34. Shidara M, Kawano K. Role of Purkinje cells in the ventral para-flocculus in short-latency ocular following responses. Exp Brain Res 1993; 93: 185–195.

    Article  PubMed  CAS  Google Scholar 

  35. Fukushima K, Buharin EV, Fukushima J. Responses of floccular Purkinje cells to sinusoidal vertical rotation and effects of muscimol infusion into the flocculus in alert cats. Neurosci Res 1993; 17: 297–305.

    Article  PubMed  CAS  Google Scholar 

  36. Fukushima K, Chin S, Fukushima J, et al. Simple-spike activity of floccular Purkinje cells responding to sinusoidal vertical rotation and optokinetic stimuli in alert cats. Neurosci Res 1996; 24: 275–289.

    Article  PubMed  CAS  Google Scholar 

  37. Powell KD, Quinn KJ, Peterson BW, et al. Preferred axis of rotation of floccular Purkinje cells in decerebrate cat. Brain Res 1996; 710: 281–286.

    Article  PubMed  CAS  Google Scholar 

  38. Belton T, McCrea RA. Role of the cerebellar flocculus region in cancellation of the VOR during passive whole body rotation. J Neurophysiol 2000; 84: 1599–1613.

    PubMed  CAS  Google Scholar 

  39. Fukushima K, Sato T, Shinmei Y, et al. The cerebellum and gaze control. Adv Neurological Sci 2000; 44: 983–992.

    Google Scholar 

  40. Ito M, Nishimaru N, Yamamoto M. Specific patterns of neuronal connections involved in the control of the rabbit’s vestibulo-ocular reflexes by the cerebellar flocculus. J Physiol 1977; 265: 833–854.

    PubMed  CAS  Google Scholar 

  41. Hirai N, Uchino Y. Floccular influence on excitatory relay neurones of vestibular reflexes of anterior semicircular canal origin in the cat. Neurosci Res 1984; 1: 327–340.

    Article  PubMed  CAS  Google Scholar 

  42. Sato U, Kawasaki T. Operational unit responsible for plane-specific control of eye movement by cerebellar flocculus in cat. J Neurophysiol 1990; 64: 551–564.

    PubMed  CAS  Google Scholar 

  43. Uchino Y, Ichikawa T, Isu N, et al. The commissural inhibition on secondary vestibulo-ocular neurons in the vertical semicircular canal system in the cat. Neurosci Lett 1986; 70: 210–216.

    Article  PubMed  CAS  Google Scholar 

  44. Rambold H, Churchland A, Selig Y, et al. Partial ablations of the flocculus and ventral paraflocculus in monkeys cause linked deficits in smooth pursuit eye movements and adaptive modification of the VOR. J Neurophysiol 2000; 87: 912–924.

    Google Scholar 

  45. Koulakov AA, Raghavachari S, Kepecs A, Lisman JE. Model for a robust neural integrator. Nature Neurosci 2002; 5: 775–782.

    Article  PubMed  CAS  Google Scholar 

  46. Goldstein HP, Robinson DA. Hysteresis and slow drift in abducens unit activity. J Neurophysiol 1986; 55: 1044–1056.

    PubMed  CAS  Google Scholar 

  47. Fukushima K, Fukushima J, Harada C, et al. Neuronal activity related to vertical eye movement in the region of the interstitial nucleus of Cajal in alert cats. Exp Brain Res 1990; 79: 43–64.

    PubMed  CAS  Google Scholar 

  48. Lisberger SG, Pavelko TA, Bronte-Stewart HM, et al. Neural basis for motor learning in the vestibuloocular reflex of primates. II. Changes in the responses of horizontal gaze velocity Purkinje cells in the cerebellar flocculus and ventral paraflocculus. J Neurophysiol 1994; 72: 954–973.

    PubMed  CAS  Google Scholar 

  49. Chin S, Fukushima K, Fukushima J, et al. Ocular torsion produced by unilateral chemical inactivation of the cerebellar flocculus in alert cats. Current Eye Res 2002; 25: 133–138.

    Article  Google Scholar 

  50. Demer JL. The orbital pulley system: A revolution in concepts of orbital anatomy. Ann NY Acad Sci 2002; 956: 17–32.

    Article  PubMed  Google Scholar 

  51. Anderson JH. Ocular torsion in the cat after lesions of the interstitial nucleus of Cajal. Ann NY Acad Sci 1981; 374: 865–871.

    Article  PubMed  CAS  Google Scholar 

  52. Fukushima K, Ohashi T, Fukushima J, et al. Ocular torsion produced by unilateral chemical inactivation of the interstitial nucleus of Cajal in chronically labyrinthectomized cats. Neurosci Res 1992; 13: 301–305.

    Article  PubMed  CAS  Google Scholar 

  53. Krauzlis RJ, Miles FA. Role of the oculomotor vermis in generating pursuit and saccades: effects of microstimulation. J Neurophysiol 1998; 80: 2046–2062.

    PubMed  CAS  Google Scholar 

  54. Takagi M, Zee DS, Tamargo RJ. Effects of lesions of the oculo-motor cerebellar vermis on eye movements in primate: smooth pursuit. J Neurophysiol 2000; 83: 2047–2062.

    PubMed  CAS  Google Scholar 

  55. Robinson FR, Straube A, Fuchs AF. Participation of caudal fastigial nucleus in smooth pursuit eye movements. II. Effects of muscimol inactivation. J Neurophysiol 1997; 78: 848–859.

    PubMed  CAS  Google Scholar 

  56. Fuchs AF, Robinson FR, Straube A. Participation of the caudal fastigial nucleus in smooth-pursuit eye movements. I. Neuronal activity. J Neurophysiol 1994; 72: 2714–2728.

    PubMed  CAS  Google Scholar 

  57. Noda H, Warabi T. Responses of Purkinje cells and mossy fibers in the flocculus of the monkey during sinusoidal movements of a visual pattern. J Physiol 1987; 387: 611–628.

    PubMed  CAS  Google Scholar 

  58. Suh M, Leung H-C, Kettner RE. Cerebellar flocculus and ventral paraflocculus Purkinje cell activity during predictive and visually driven pursuit in monkey. J Neurophysiol 2000; 84: 1835–1850.

    PubMed  CAS  Google Scholar 

  59. Noda H, Mikami A. Discharges of neurons in the dorsal paraflocculus of monkeys during eye movements and visual stimulation. J Neurophysiol 1986; 56: 1129–1476.

    PubMed  CAS  Google Scholar 

  60. Glickstein M, Gerrits N, Kralihans I, et al. Visual pontocerebellar projections in the macaque (review). J Comp Neurol 1994; 349: 51–72.

    Article  PubMed  CAS  Google Scholar 

  61. Chubb MC, Fuchs AF. Contribution of y group of vestibular nuclei and dentate nucleus of cerebellum to generation of vertical smooth eye movements. J Neurophysiol 1982; 48: 75–99.

    PubMed  CAS  Google Scholar 

  62. Robinson FR, Brettler SC. Smooth pursuit properties of neurons in the ventrolateral posterior interpositus nucleus of the monkey cerebellum. Soc Neurosci Abstr 1998; 24: 1405.

    Google Scholar 

  63. Straube A, Scheuerer W, Eggert T. Unilateral cerebellar lesions affect initiation of ipsilateral smooth pursuit eye movements in humans. Ann Neurol 1997; 42: 891–898.

    Article  PubMed  CAS  Google Scholar 

  64. Takagi M, Tamargo R, Zee DS. Effects of lesions of the cerebellar oculomotor vermis on eye movements in primate: binocular control. In: Prablanc C, editor. Progress in Brain Research. Amsterdam: Elsevier, in press.

  65. Zhang H, Gamlin PDR. Neurons in the posterior interposed nucleus of the cerebellum related to vergence and accommodation. I. Steady-state characteristics. J Neurophysiol 1998; 79: 1255–1269.

    PubMed  CAS  Google Scholar 

  66. Zhang HY, Gamlin PDR. Single-unit activity within the posterior fastigial nucleus during vergence and accommodation in the alert primate. Soc Neurosci Abstr 1996; 22: 2034.

    Google Scholar 

  67. Gamlin PDR, Zhang HY. Effects of muscimol blockade of the posterior fastigial nucleus on vergence and ocular accommodation in the primate. Soc Neurosci Abstr 1996; 22: 2034.

    Google Scholar 

  68. Gamlin PD, Clarke RJ. Single-unit activity in the primate nucleus reticularis tegmenti pontis related to vergence and ocular accommodation. J Neurophysiol 1995; 73: 2115–2119.

    PubMed  CAS  Google Scholar 

  69. Gamlin PD, Yoon K. An area for vergence eye movement in primate frontal cortex. Nature 2000; 407: 1003–1007.

    Article  PubMed  CAS  Google Scholar 

  70. Fukushima K, Yamanobe T, Shinmei Y, et al. Coding of smooth eye movements in three dimensional space by frontal cortex. Nature 2002; 419: 157–162.

    Article  PubMed  CAS  Google Scholar 

  71. Fukushima K, Yamanobe T, Shinmei Y, et al. Representation of smooth gaze movements in 3-D space by frontal cortex in monkeys. Soc Neurosci Abstr 2001; 27: 1068.

    Google Scholar 

  72. Brettler SC, Fuchs AF. Activity of caudal fastigial nucleus neurons during head-unrestrained gaze shifts in rhesus monkeys. Soc Neurosci Abstr 2001; 27: 1073.

    Google Scholar 

  73. Shinoda Y, Sugiuchi Y, Futami T, et al. Axon collaterals of mossy fibers from the pontine nucleus in the cerebellar dentate nucleus. J Neurophysiol 1992; 67: 547–560.

    PubMed  CAS  Google Scholar 

  74. King WM, Zhou W. New ideas about binocular coordination of eye movements: is there a cammeleon in the primate family tree? New Anat 2000; 261: 153–161.

    Article  CAS  Google Scholar 

  75. Viirre E, Cadera W, Vilis T. Monocular adaptation of the saccadic system and vestibulo-ocular reflex. Invest Ophthalmol Vis Sci 1988; 29: 1339–1347.

    PubMed  CAS  Google Scholar 

  76. Asanuma C, Thach WT, Jones EG. Brainstem and spinal projections of the deep cerebellar nuclei in the monkey, with observations on the brainstem projections of the dorsal column nuclei. Brain Res Rev 1983; 5: 299–322.

    Article  Google Scholar 

  77. Wilson VJ, Melvill Jones G. Mammalian Vestibular Physiology. New York: Plenum Press, 1979: 1–365.

    Google Scholar 

  78. Angelaki DE, Hess BJM. Lesion of the nodulus and ventral uvula abolish steady-state off-vertical axis otolith response. J Neurophysiol 1995; 73: 1716–1720.

    PubMed  CAS  Google Scholar 

  79. Barmack NH, Shojaku H. Vestibular and visual climbing fiber signals evoked in the uvula-nodulus of the rabbit cerebellum by natural stimulation. J Neurophysiol 1995; 74: 2573–2589.

    PubMed  CAS  Google Scholar 

  80. Zhou W, Tang B-F, King WM. Responses of rostral fastigial neurons to linear acceleration in an alert monkey. Exp Brain Res 2001; 139: 111–115.

    Article  PubMed  CAS  Google Scholar 

  81. Barnes G. Visual-vestibular interaction in the control of head and eye movement: the role of visual feedback and predictive mechanisms. Prog Neurobiol 1993; 41: 435–472.

    Article  PubMed  CAS  Google Scholar 

  82. Moschner C, Zangemeister WH, Demer JL. Anticipatory smooth eye movements of high velocity triggered by large target steps: normal performance and effects of cerebellar degeneration. Vision Res 1996; 36: 1341–1348.

    Article  PubMed  CAS  Google Scholar 

  83. Lekwuwa GU, Barnes GR. Effects of prediction on smooth pursuit velocity gain in cerebellar patients and controls. In: Findlay JM, Walker R, Kentridge RW, editors. Eye Movement Research Mechanisms, Processes and Applications. Amsterdam: Elsevier, 1995: 119–129.

    Chapter  Google Scholar 

  84. Fukushima K, Yamanobe T, Shinmei Y, et al. Predictive responses of periarcuate pursuit neurons to visual target motion. Exp Brain Res 2002; 145: 104–120.

    Article  PubMed  Google Scholar 

  85. Lekwuwa GU, Barnes GR. Cerebral control of eye movements. II. Timing of anticipatory eye movements, predictive pursuit and phase errors in focal cerebral lesions. Brain 1996; 119: 491–505.

    Article  PubMed  Google Scholar 

  86. Xiong G, Hiramatsu T, Nagao S. Corticopontocerebellar pathways from the prearcuate region to hemispheric lobule VII of the cerebellum: an anterograde and retrograde tracing study in the monkey. Neurosci Lett 2002; 322: 173–176.

    Article  PubMed  CAS  Google Scholar 

  87. Ito M. Movement and thought: identical control mechanisms by the cerebellum. Trends Neurosci 1993; 16: 448–450.

    Article  PubMed  CAS  Google Scholar 

  88. Ito M. Cerebellar long-term depression: characterization, signal transduction, and functional roles. Physiol Rev 2001; 81: 1143–1195.

    PubMed  CAS  Google Scholar 

  89. Thier P, Haarmeier T, Treue S, et al. Absence of common functional denominator of visual disturbances in cerebellar disease. Brain 1999; 122: 2133–2146.

    Article  PubMed  Google Scholar 

  90. Stone LS, Lisberger SG. Visual responses of Purkinje cells in the cerebellar flocculus during smooth-pursuit eye movements in monkeys. II. Complex spikes. J Neurophysiol 1990; 63: 1262–1275.

    PubMed  CAS  Google Scholar 

  91. Raymond JL, Lisberger SG. Neural learning rules for the vestibulo-ocular reflex. J Neurosci 1998; 18: 9112–9129.

    PubMed  CAS  Google Scholar 

  92. Barnes GR, Asselman PT. The mechanism of prediction in human smooth pursuit eye movements. Brain 1991; 439: 439–461.

    CAS  Google Scholar 

  93. Fukushima K, Wells SG, Yamanobe T, et al. Adaptive changes in smooth pursuit eye movement induced by pursuit-vestibular interaction training in monkeys. Exp Brain Res 2001; 139: 473–481.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kikuro Fukushima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fukushima, K. Roles of the cerebellum in pursuit-vestibular interactions. Cerebellum 2, 223–232 (2003). https://doi.org/10.1080/14734220310016178

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1080/14734220310016178

Keywords

Navigation