Skip to main content
Log in

Editorial

Cerebellar afferent systems: can they help us understand cerebellar function?

  • Published:
The Cerebellum Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Ito M. Hopes for cerebellar research in the 21st century. Cerebellum 2002; 2: 93–94.

    Article  Google Scholar 

  2. Holmes G. The cerebellum of man. Brain 1939; 62: 1–30.

    Article  Google Scholar 

  3. Heidary H, Tomach J. Neuron numbers and perycaryon areas in the human cerebellar nuclei. Acta Anat (Basel) 1969; 74: 290–296.

    CAS  Google Scholar 

  4. Bower JM. Control of sensory data acquisition. Internat Rev Neurobiol 1997; 41: 489–513.

    Article  CAS  Google Scholar 

  5. Bell CC. Memory-based expectations in electrosensory systems. Curr Opin Neurobiol 2001; 11: 481–487.

    Article  PubMed  CAS  Google Scholar 

  6. Simpson JI, Van der Steen J, Tan J, Graf W, Leonard CS. Representations of ocular rotations in the cerebellar flocculus of the rabbit. Prog Brain Res 1989; 80: 213–223.

    PubMed  CAS  Google Scholar 

  7. Miles FA, Lisberger SG. Plasticity in the vestibulo-ocular reflex: new hypothesis. Ann Rev Neurosci 1981; 4: 273–298.

    Article  PubMed  CAS  Google Scholar 

  8. Osborn CE, Poppele RE. Parallel distributed network characteristics of the DSCT. J Neurophysiol 1992; 68: 1100–1112.

    PubMed  CAS  Google Scholar 

  9. Lundberg A. Function of the ventral spinocerebellar tract. A new hypothesis. Exp Brain Res 1971; 12: 317–330.

    PubMed  CAS  Google Scholar 

  10. McCollum G, Robertson LT. Patterns of intersection among climbing fiber receptive fields. Neurosci 1988; 27: 93–105.

    Article  CAS  Google Scholar 

  11. Jorntell H, Ekerot C, Garwicz M, Luo XT. Functional organization of climbing fibre projection to the cerebellar anterior lobe of the rat. J Physiol (Lond) 2000; 522: 297–309.

    Article  CAS  Google Scholar 

  12. Bosco G, Poppele RE. Proprioception from a spinocerebellar perspective. Physiol Rev 2001; 81: 539–568.

    PubMed  CAS  Google Scholar 

  13. Oscarsson O. Functional organization of the spino- and cuneocerebellar tracts. Physiol Rev 1965; 45: 495–522.

    PubMed  CAS  Google Scholar 

  14. Bosco G, Poppele R. Broad directional tuning in spinal projections to the cerebellum. J Neurophysiol 1993; 70: 863–866.

    PubMed  CAS  Google Scholar 

  15. Bosco G, Poppele R, Eian J. Reference frames for spinal proprioception: limb endpoint or joint-level based? J Neurophysiol 2000; 83: 2931–2945.

    PubMed  CAS  Google Scholar 

  16. Bosco G, Poppele R. Reference frames for spinal proprioception: kinematics-based or kinetics-based? J Neurophysiol 2000; 83: 2946–2955.

    PubMed  CAS  Google Scholar 

  17. Georgopoulos AP. Current issues in directional motor control. Trends Neurosci 1995; 18: 506–510.

    Article  PubMed  CAS  Google Scholar 

  18. Ashe J. Force and the motor cortex. Behav Brain Res 1997; 87: 255–269.

    Article  PubMed  CAS  Google Scholar 

  19. Johnson MT, Mason CR, Ebner TJ. Central processes for the multiparametric control of arm movements in primates. Curr Opin Neurobiol 2001; 11: 684–688.

    Article  PubMed  CAS  Google Scholar 

  20. Kawato M. Internal models for motor control and trajectory planning. Curr Opin Neurobiol 1999; 9: 718–727.

    Article  PubMed  CAS  Google Scholar 

  21. Kawato M, Wolpert D. Internal models for motor control. Novartis Foundation Symposium 1998; 218: 291–304.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bosco, G., Poppele, R. Editorial. Cerebellum 2, 162–164 (2003). https://doi.org/10.1080/14734220310016105

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1080/14734220310016105

Navigation