Skip to main content
Log in

Cerebello-thalamic synapses and motor adaptation

  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

The cerebellum’s influence on voluntary movement is mediated, in large part, through the cerebello-thalamo-cortical (CTC) pathway. Of particular relevance here are those neurons in the cerebellar nuclei that project, via thalamus, to pyramidal tract neurons in primary motor cortex. Several lines of evidence implicate cerebello-thalamic (CT) synaptic plasticity as a neural substrate underlying movement adaptation in adult animals. CT synapses exhibit a number of structural characteristics suggestive of a capacity for both formation of new synapses, and alterations in efficacy of transmission across existing synapses. Long-term potentiation can be evoked across CT synapsesin vitro by high frequency stimulation, albeit in young animals. Evidence regarding the contribution of CT synaptic plasticity to two different types of movement adaptation in adult animals is conflicting. Adaptation involving a strengthening and re-coordination of voluntary movement is associated with an increase in density of CT synaptic boutons and an increase in number of synaptic vesicles available for immediate neurotransmitter release within each bouton. On the other hand, adaptation involving associative conditioning of a reduced sensorimotor neural circuit is associated with plasticity at thalamo-cortical but not CT synapses. These conflicting findings may reflect differences in the extent of synaptic re-organization that occurs at thalamic versus cortical levels, differences in the neural circuitry mediating each behavior, and/or differences in the spatio-temporal convergence of activity in the thalamus during the adaptive processes. It is concluded that CT synaptic plasticity can underlie movement adaptation if the adaptation requires reorganization of the cerebellum’s influence on cerebral cortex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tsukahara N, Toyama K, Kosaka K. Intracellularly recorded responses of red nucleus neurones during antidromic and orthodromic activation. Experientia 1964; 20: 632–633.

    Article  PubMed  CAS  Google Scholar 

  2. Uno M, Yoshida M, Hirota I. The mode of cerebello-thalamic relay transmission investigated with intracellular recordings from cells of the ventrolateral nucleus of cat’s thalamus. Exp Brain Res 1970; 10: 121–139.

    Article  PubMed  CAS  Google Scholar 

  3. Shinoda Y, Futami T, Kano M. Synaptic organization of the cerebello-thalamo-cerebral pathway in the cat. II. Input-output organization of single thalamocortical neurons in the ventrolateral thalamus. Neurosci Res 1985; 2: 157–180.

    CAS  Google Scholar 

  4. Sawyer SF, Young SJ, Groves PM, Tepper JM. Cerebellar responsive neurons in the thalamic ventroanterior-ventrolateral complex of rats: in vivo electrophysiology. Neuroscience 1994; 63: 711–724.

    Article  PubMed  CAS  Google Scholar 

  5. Yoshida M, Yajima K, Uno M. Different activation of the two types of the pyramidal tract neurons through the cerebello-thalamocortical pathway. Experientia 1966; 22: 331–332.

    Article  PubMed  CAS  Google Scholar 

  6. Futami T, Kano M, Sento S, Shinoda Y. Synaptic organization of the cerebello-thalamo-cerebral pathway in the cat. III. Cerebellar input to corticofugal neurons destined for different subcortical nuclei in areas 4 and 6. Neurosci Res 1986; 3: 321–344.

    CAS  Google Scholar 

  7. Pinault D, Deschenes M. The origin of rhythmic fast subthreshold depolarizations in thalamic relay cells of rats under urethane anaesthesia. Brain Res 1992; 595: 295–300.

    Article  PubMed  CAS  Google Scholar 

  8. Timofeev I, Steriade M. Fast (mainly 30-100 Hz) oscillations in the cat cerebellothalamic pathway and their synchronization with cortical potentials. J Physiol Lond 1997; 504: 153–168.

    Article  PubMed  CAS  Google Scholar 

  9. Rinvik E, Grofova I. Light and electron microscopical studies of the normal nuclei ventralis lateralis and ventralis anterior thalami in the cat. Anat Embryol 1974; 146: 57–93.

    Article  PubMed  CAS  Google Scholar 

  10. Rinvik E, Grofova I. Cerebellar projections to the nuclei ventralis lateralis and ventralis anterior thalami. Experimental electron microscopical and light microscopical studies in the cat. Anat Embryol 1974; 146: 95–111.

    Article  PubMed  CAS  Google Scholar 

  11. Harding BN, Powell TPS. An electron microscopic study of the centre-median and ventrolateral nuclei of the thalamus in the monkey. Philos Trans R Soc Lond B Biol Sci 1977; 279: 357–412.

    Article  PubMed  CAS  Google Scholar 

  12. Ilinsky IA. Structural and connectional diversity of the primate motor thalamus: experimental light and electron microscopic studies in the rhesus monkey. Stereotact Funct Neurosurg 1990; 55: 114–124.

    Article  Google Scholar 

  13. Kultas-Ilinsky K, Ilinsky IA. Fine structure of the ventral lateral nucleus (VL) of theMacaca mulatta thalamus: cell types and synaptology. J Comp Neurol 1991; 314: 319–349.

    Article  PubMed  CAS  Google Scholar 

  14. Aumann TD, Rawson JA, Finkelstein DI, Horne MK. Projections from the lateral and interposed cerebellar nuclei to the thalamus of the rat: a light and electron microscopic study using single and double anterograde labelling. J Comp Neurol 1994; 349: 165–181.

    Article  PubMed  CAS  Google Scholar 

  15. Calverley RK, Jones DG. Contributions of dendritic spines and perforated synapses to synaptic plasticity. Brain Res Rev 1990; 15: 215–249.

    Article  PubMed  CAS  Google Scholar 

  16. Geinisman Y, de Toledo-Morrell L., Morrell F, Heller RE, Rossi M, Parshall RF. Structural synaptic correlate of long-term potentiation: formation of axospinous synapses with multiple, completely partitioned transmission zones. Hippocampus 1993; 3: 435–445.

    Article  PubMed  CAS  Google Scholar 

  17. Segal I, Korkotian I, Murphy DD. Dendritic spine formation and pruning: common cellular mechanisms? TINS 2000; 23: 53–57.

    PubMed  CAS  Google Scholar 

  18. Luscher C, Nicoll RA, Malenka RC, Muller D. Synaptic plasticity and dynamic modulation of the postsynaptic membrane. Nature Neurosci 2000; 35: 45–50.

    Google Scholar 

  19. Shinoda Y. General discussion 3. In: Motor areas of the cerebral cortex. Ciba Foundation Symposium 132. New York: Wiley. 1987: 221–230.

    Google Scholar 

  20. Aumann TD, Horne MK. Ramification and termination of single axons in the cerebellothalamic pathway of the rat. J Comp Neurol 1996; 376: 420–430.

    Article  PubMed  CAS  Google Scholar 

  21. Rispal-Padel L, Harnois C, Troiani D. Converging cerebellofugal inputs to the thalamus. I. Mapping of monosynaptic field potentials in the ventrolateral nucleus of the thalamus. Exp Brain Res 1987; 68: 47–58.

    Article  PubMed  CAS  Google Scholar 

  22. Toyama K, Tsukahara N, Kosaka K, Matsunami K. Synaptic excitation of red nucleus neurones by fibres from interpositus nucleus. Exp Brain Res 1970; 11: 187–198.

    Article  PubMed  CAS  Google Scholar 

  23. Shinoda Y, Futami T, Mituma H, Yokota J. Morphology of single neurones in the cerebello-rubrospinal system. Behav Brain Res 1988; 28: 59–64.

    Article  PubMed  CAS  Google Scholar 

  24. Thach WT, Goodkin HP, Keating JG. The cerebellum and the adaptive coordination of movement. Ann Rev Neurosci 1992; 15: 403–442.

    Article  PubMed  CAS  Google Scholar 

  25. Rispal-Padel L, Cicirata F, Pons C. Contribution of the dentate-thalamo-cortical system to the control of motor synergy. Neurosci Lett 1981; 22: 137–144.

    Article  PubMed  CAS  Google Scholar 

  26. Rispal-Padel L. Contribution of cerebellar efferents to the organization of motor synergy. Rev Neurol 1993; 149: 716–727.

    PubMed  CAS  Google Scholar 

  27. Aumann TD, Redman SJ, Horne MK. Long-term potentiation across rat cerebello-thalamic synapses in vitro. Neurosci Lett 2000; 287: 151–155.

    Article  PubMed  CAS  Google Scholar 

  28. Lim KH, Leong SK. Aberrant bilateral projections from the dentate and interposed nuclei in albino rats after neonatal lesions. Brain Res 1975; 96: 306–309.

    Article  PubMed  CAS  Google Scholar 

  29. Leong SK. Plasticity of cerebellar efferents after neonatal lesions in albino rats. Neurosci Lett 1977; 7: 281–289.

    Article  Google Scholar 

  30. Castro AJ. Projections of the superior cerebellar peduncle in rats and the development of new connections in response to neonatal hemicerebellectomy. J Comp Neurol 1978; 178: 611–628.

    Article  PubMed  CAS  Google Scholar 

  31. Kawaguchi S, Yamamoto T, Samejima A, Itoh K, Mizuno N. Morphological evidence for axonal sprouting of cerebellothalamic neurons in kittens after neonatal hemicerebellectomy. Exp Brain Res 1979; 35: 511–518.

    Article  PubMed  CAS  Google Scholar 

  32. Kawaguchi S, Yamamoto T, Samejima A. Electrophysiological evidence for axonal sprouting of cerebellothalamic neurons in kittens after neonatal hemicerebellectomy. Exp Brain Res 1979; 36: 21–39.

    Article  PubMed  CAS  Google Scholar 

  33. Yamamoto T, Kawaguchi S, Samejima A. Electrophysiological studies on plasticity of cerebellothalamic neurons in rats following neonatal hemicerebellectomy. Jpn J Physiol 1981; 31: 217–224.

    PubMed  CAS  Google Scholar 

  34. Haroian AJ, Campellone AD. A quantitative analysis of the ipsilateral cerebellothalamic projection following hemicerebellectomy in neonatal rats. A retrograde HRP study. Brain Res 1986; 391: 69–78.

    CAS  Google Scholar 

  35. Aumann TD, Horne MK. Ultrastructural change at rat cerebellothalamic synapses associated with volitional motor adaptation. J Comp Neurol 1999; 409: 71–84.

    Article  PubMed  CAS  Google Scholar 

  36. Tsukahara N, Oda Y, Notsu T. Classical conditioning mediated by the red nucleus in the cat. J Neurosci 1981; 1: 72–79.

    PubMed  CAS  Google Scholar 

  37. Meftah EM, Rispal-Padel L. Reverse effects of conditioning produced by two different unconditioned stimuli on thalamocortical transmission. J Neurophysiol 1997; 77: 1663–1678.

    PubMed  CAS  Google Scholar 

  38. Rispal-Padel L, Meftah EM. Changes in motor responses induced by cerebellar stimulation during classical forelimb flexion conditioning in cat. J Neurophysiol 1992; 68: 908–928.

    PubMed  CAS  Google Scholar 

  39. Meftah EM, Rispal-Padel L. Synaptic plasticity in the thalamocortical pathway as one of the neurobiological correlates of forelimb flexion conditioning: electrophysiological investigations in the cat. J Neurophysiol 1994; 72: 2631–2647.

    PubMed  CAS  Google Scholar 

  40. Baranyi A, Szente MB, Woody CD. Properties of associative long-lasting potentiation induced by cellular conditioning in the motor cortex of conscious cats. Neuroscience 1991; 42: 321–334.

    Article  PubMed  CAS  Google Scholar 

  41. Iriki A, Pavlides C, Keller A, Asanuma H. Long-term potentiation of thalamic input to the motor cortex induced by coactivation of thalamocortical and corticocortical afferents. J Neurophysiol 1991; 65: 1435–1441.

    PubMed  CAS  Google Scholar 

  42. Sakamoto T, Porter LL, Asanuma H. Long-lasting potentiation of synaptic potentials in the motor cortex produced by stimulation of the sensory cortex in the cat: a basis of motor learning. Brain Res 1987; 413: 360–364.

    Article  PubMed  CAS  Google Scholar 

  43. Iriki A, Pavlides C, Keller A, Asanuma H. Long-term potentiation in the motor cortex. Science 1989; 245: 1385–1387.

    Article  PubMed  CAS  Google Scholar 

  44. Marty S, Berzaghi M, Berninger B. Neurotrophins and activity-dependent plasticity of cortical interneurons. TINS 1997; 20: 198–202.

    PubMed  CAS  Google Scholar 

  45. Pananceau M, Rispal-Padel L, Meftah EM. Synaptic plasticity of the interpositorubral pathway functionally related to forelimb flexion movements. J Neurophysiol 1996; 75: 2542–2561.

    PubMed  CAS  Google Scholar 

  46. Aumann TD, Horne MK. A comparison of the ultrastructure of synapses in the cerebello-rubral and cerebello-thalamic pathways in the rat. Neurosci Lett 1996; 211: 175–178.

    Article  PubMed  CAS  Google Scholar 

  47. Sears LL, Logue SF, Steinmetz JE. Involvement of the ventrolateral thalamic nucleus in rabbit classical eyeblink conditioning. Behav Brain Res 1996; 74: 105–117.

    Article  PubMed  CAS  Google Scholar 

  48. Seitz RJ, Canavan AG, Yaguez L. et al. Successive roles of the cerebellum and premotor cortices in trajectorial learning. Neuroreport 1994; 5: 2541–2544.

    Article  PubMed  CAS  Google Scholar 

  49. Jueptner M, Frith CD, Brooks DJ, Frackowiak RS, Passingham RE. Anatomy of motor learning. II. Subcortical structures and learning by trial and error. J Neurophysiol 1997; 77: 1325–1337.

    PubMed  CAS  Google Scholar 

  50. Milak MS, Bracha V, Bloedel JR. Relationship of simultaneously recorded cerebellar nuclear neuron discharge to the acquisition of a complex, operantly conditioned forelimb movement in cats. Exp Brain Res 1995; 105: 325–330.

    Article  PubMed  CAS  Google Scholar 

  51. Bloedel JR, Bracha V, Shimansky Y, Milak MS. The role of the cerebellum in the acquisition of complex volitional forelimb movements. In: Bloedel JR, Ebner TJ, Wise SP editors. The acquisition of motor behavior in vertebrates. Massachusetts: MIT press, 1996: 319–341.

    Google Scholar 

  52. Steriade M. Coherent oscillations and short-term plasticity in corticothalamic networks. TINS 1999; 22: 337–345.

    PubMed  CAS  Google Scholar 

  53. Krupa DJ, Ghazanfar AA, Nicolelis MAL. Immediate thalamic sensory plasticity depends on corticothalamic feedback. Proc Nat Acad Sci USA 1999; 96: 8200–8205.

    Article  PubMed  CAS  Google Scholar 

  54. Parker JL, Dostrovsky O. Cortical involvement in the induction, but not expression, of thalamic plasticity. J Neurosci 1999; 19: 8623–8629.

    PubMed  CAS  Google Scholar 

  55. Fox K, Glazewski S, Schulze S. Plasticity and stability of somatosensory maps in thalamus and cortex. Cur Opin Neurobiol 2000; 10: 494–497.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T D Aumann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aumann, T.D. Cerebello-thalamic synapses and motor adaptation. Cerebellum 1, 69–77 (2002). https://doi.org/10.1080/147342202753203104

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1080/147342202753203104

Keywords

Navigation