Skip to main content

Advertisement

Log in

AZT 5′-triphosphate nanoformulation suppresses human immunodeficiency virus type 1 replication in peripheral blood mononuclear cells

  • Short Communication
  • Published:
Journal of NeuroVirology Aims and scope Submit manuscript

Abstract

Inefficient cellular phosphorylation of nucleoside and nucleotide analog reverse transcriptase inhibitors (NRTIs) to their active nucleoside 5′-triphosphate (NTPs) form is one of the limitations for human immunodeficiency virus (HIV) therapy. We report herein direct binding of 3′-azido-3′-deoxythymidine-5′-triphosphate (AZTTP) onto magnetic nanoparticles (Fe3O4; magnetite) due to ionic interaction. This magnetic nanoparticle bound AZTTP (MP-AZTTP) completely retained its biological activity as assessed by suppression of HIV-1 replication in peripheral blood mononuclear cells. The developed MP-AZTTP nanoformulation can be used for targeting active NRTIs to the brain by application of an external magnetic force and thereby eliminate the brain HIV reservoir and help to treat NeuroAIDS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Antonelli G, Turriziani O, Verri A, Narcisco P, Ferri F, D’Offizi G, Dianzani F (1996). Long-term exposure to zidovudine affects in vitro and in vivo the efficiency of phosphorylation of thymidine kinase. AIDS Res Hum Retrovir 12: 223–228.

    Article  CAS  PubMed  Google Scholar 

  • Bacri JC, Perzynski R, Salin D, Cabuil V, Massart R (1990). Ionic ferrofluids: a crossing of chemistry and physics. J Magn Magn Mater 85: 27–32.

    Article  CAS  Google Scholar 

  • Chertok B, Moffat BA, David AE, Yu F, Bergemann C, Ross BD, Yang VC (2008). Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors. Biomaterials 29: 487–496.

    Article  CAS  PubMed  Google Scholar 

  • Furman PA, Fyfe JA, St Clair MH, Weinhold K, Rideout JL, Freeman GA, Lehrman SN, Bolognesi DP, Broder S, Mitsuya H (1986). Phosphorylation of 3′-azido-3′-deoxythymidine and selective interaction of the 5′-triphosphate with human immunodeficiency virus reverse transcriptase. Proc Natl Acad Sci USA 83: 8333–8337.

    Article  CAS  PubMed  Google Scholar 

  • Ito A, Shinkai M, Honda H, Kobayashi T (2005). Medical application of functionalized magnetic nanoparticles. J Biosci Bioeng 100: 1–11.

    Article  CAS  PubMed  Google Scholar 

  • Kohli E, Han HY, Zeman AD, Vinogradov SV (2007). Formulations of biodegradable nanogel carriers with 5′-triphosphates of nucleoside analogs that display a reduced cytotoxicity and enhanced drug activity. J Control Release 121: 19–27.

    Article  CAS  PubMed  Google Scholar 

  • Koneracká M, Kopcanský P, Timko M, Ramchand CN, Saiyed ZM, Trevan M, e’Sequeira A (2006). Immobilization of enzymes on magnetic particles. In: Immobilization of enzymes and cells, 2nd ed. Guisan JM (ed). New Jersey: Humana Press. pp. 217–228.

    Chapter  Google Scholar 

  • Kreller DI, Gibson G, Novak W, Van Loon GW, Horton JH (2003). Competitive adsorption of phosphate and carboxylate with natural organic matter on hydrous iron oxides as investigated by chemical force microscopy. Physiochem Eng Aspects 212: 249–264.

    Article  CAS  Google Scholar 

  • Lavie A, Schlichting I, Vetter IR, Konrad M, Reinstein J, Goody RS (1997). The bottleneck in AZT activation. Nat Med 3: 922–924.

    Article  CAS  PubMed  Google Scholar 

  • Magnani M, Rossi L, Fraternale A, Silvotti L, Quintavalla F, Piedimonte G, Matteucci D, Baldinotti F, Bendinelli M (1994). Feline immunodeficiency virus infection of macrophages: in vitro and in vivo inhibition by dideoxycytidine-5′-triphosphate-loaded erythrocytes. AIDS Res Hum Retrovir 10: 1179–1186.

    Article  CAS  PubMed  Google Scholar 

  • Nair MPN, Saiyed ZM, Nair N, Gandhi N, Rodriguez JW, Boukli N, Vasquez E, Malow RM, Burbano MJM (2009). Methamphetamine enhances HIV-1 infectivity in monocytes derived dendritic cells. J Neuroimmune Pharmacol 4: 129–139.

    Article  PubMed  Google Scholar 

  • Pardridge WM (2007). Blood brain barrier delivery. Today 12: 54–61.

    CAS  Google Scholar 

  • Potula R, Ramirez S, Knipe B, Leibhart J, Schall K, Heilman D, Morsey B, Mercer A, Papugani A, Dou H, Persidsky Y (2008). Peroxisome proliferator-activated receptor-γ activation suppresses HIV-1 replication in an animal model of encephalitis. AIDS 22: 1539–1549.

    Article  CAS  PubMed  Google Scholar 

  • Riviere C, Martina MS, Tomita Y, Wilhelm C, Dinh AT, Menager C, Pinard E, Lesieur E, Gazeau F, Seylaz J (2007). Magneting targeting of nanometric magnetic fluid loaded liposomes to specific brain intravascular areas: A dynamic imaging study in mice. Radiology 244: 439–448.

    Article  PubMed  Google Scholar 

  • Saiyed ZM, Sharma S, Godawat R, Telang SD, Ramchand CN (2007). Activity and stability of alkaline phosphatase (ALP) immobilized onto magnetic nanoparticles. J Biotechnol 131: 240–244.

    Article  CAS  PubMed  Google Scholar 

  • Saiyed, ZM, Telang, SD, Ramchand CN (2003). Application of magnetic techniques in the field of drug discovery and biomedicine. BioMagn Res Technol 1: 1–8.

    Article  Google Scholar 

  • Szebeni J, Wahl SM, Betageri GV, Wahl LM, Gartner S, Popovic M, Parker RJ, Black CD, Weinstein JN (1990). Inhibition of HIV-1 in monocyte/macrophage cultures by 2′,3′-dideoxycytidine-5′-triphosphate, free and in liposomes. AIDS Res Hum Retrovir 6: 691–702.

    Article  CAS  PubMed  Google Scholar 

  • Vinogradov SV (2007). Polymeric nanogel formulations of nucleoside analogs. Expert Opin Drug Deliv 4: 5–17.

    Article  CAS  PubMed  Google Scholar 

  • Vinogradov SV, Kohli E, Zeman AD (2005). Crosslinked polymeric nanogel formulation of 5′-triphosphates of nucleoside analogs: role of the cellular membrane in drug release. Mol Pharmacol 2: 449–461.

    Article  CAS  Google Scholar 

  • Wagner CR, Iyer VV, McIntee EJ (2000). Pronucleotides: toward the in vivo delivery of antiviral and anticancer nucleotides. Med Res Rev 20: 417–451.

    Article  CAS  PubMed  Google Scholar 

  • Wohrl BM, Loubiere L, Brundiers R, Goody RS, Klatzmann D, Konrad M (2005). Expressing engineered thymidylate kinase variants in human cells to improve AZT phosphorylation and human immunodeficiency virus inhibition. J Gen Virol 86: 757–764.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madhavan P. N. Nair.

Additional information

This work was supported in part by National Institute on Drug Abuse grants R01-DA012366, R01-DA014218, R01-DA015628, R01-DA021537, R37-DA025576, and R01-DA027049.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saiyed, Z.M., Gandhi, N.H. & Nair, M.P.N. AZT 5′-triphosphate nanoformulation suppresses human immunodeficiency virus type 1 replication in peripheral blood mononuclear cells. Journal of NeuroVirology 15, 343–347 (2009). https://doi.org/10.1080/13550280903062813

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1080/13550280903062813

Keywords

Navigation