Skip to main content
Log in

Bovine herpesvirus 5 induces an overproduction of nitric oxide in the brain of rabbits that correlates with virus dissemination and precedes the development of neurological signs

  • Published:
Journal of NeuroVirology Aims and scope Submit manuscript

Abstract

We herein report an investigation of nitric oxide (NO) levels, a candidate molecule for neuronal toxicity and dysfunction, in the brain of rabbits during experimental neurological infection by bovine herpesvirus 5 (BoHV-5). Spectrophotometry for NO products (NO2 and NO3) revealed that NO levels were significantly increased (F(4, 40) = 3.33; P <.02) in several regions of the brain of rabbits with neurological disease, correlating with moderate to high BoHV-5 titers. Immunohistochemistry of brain regions revealed a group of cells with neuronal and astrocyte morphology expressing the enzyme inducible NO synthase (iNOS) close to virus antigenpositive neurons. In addition, the investigation of nitric oxide levels between 2 and 6 days post infection (d.p.i.) revealed an initial increase in NO levels in the olfactory bulb and cortex (OB/OC) and anterior cortex (AC) at day 3 p.i., correlating with the initial detection of virus. As the infection proceeded, increased NO levels— and infectivity—were progressively being detected in the OB/CO and AC at day 4 p.i. (F(12, 128) = 2.82; P <.003); at day 5 p.i. in several brain regions (P <.003 in the OB/OC); and at day 6 p.i. in all regions (P <.003) but the thalamus. These results show that BoHV-5 replication in the brain of rabbits induces an overproduction of NO. The increase in NO levels in early infection correlated spatially and temporally with virus dissemination within the brain and preceded the development of neurological signs. Thus, the overproduction of NO in the brain of BoHV-5-infected rabbits may be a component of the pathogenesis of BoHV-5-induced neurological disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akaike T, Maeda H (2000). Nitric oxide and virus infection. Immunology 101: 300–308.

    Article  CAS  PubMed  Google Scholar 

  • Bagetta G, Paoletti AM, Leta A, Del Duca C, Nisticò R, Rotiroti D, Corasaniti MT (2002). Abnormal expression of neuronal nitric oxide synthase triggers limbic seizures and hippocampal damage in rat. Biochem Biophys Res Commun 2: 255–260.

    Article  Google Scholar 

  • Bogdan, C (1998). The Multiplex Function of Nitric Oxide in (Auto) immunity. J Exp Med 187: 9, 1361–1365.

    Article  Google Scholar 

  • Bradford MM (1976). A rapid and sensitive method for the quantitation of micrograms quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 7: 248–254.

    Article  Google Scholar 

  • Carrilo BJ, Pospischil A, Dahme E (1983). Pathology of a bovine viral necrozing encephalitis in Argentina. Zbl Vet Med B 30: 161–168.

    Google Scholar 

  • Cerqueira NF, Yoshida WB (2002). Óxido nítrico: revisão. Acta Cir Bras 17: 417–423.

    Article  Google Scholar 

  • Chesler DA, Reiss CS (2002). The role of IFNγ in immune responses to viral infections of the central nervous system. Cytokine Growth Factor Rev 12: 441–454.

    Article  Google Scholar 

  • Chowdhury SI, Lee BJ, Mosier D, Sur JH, Osório FA, Kennedy G, Weiss ML (1997). Neurophatology of bovine herpesvirus 5 (BHV-5) meningo-encephalitis in a rabbit seizure model. J Comp Pathol 117: 295–310.

    Article  CAS  PubMed  Google Scholar 

  • Delhon G, Moraes MP, Lu Z, Afonso CL, Flores EF, Weiblen R, Kutish GF, Rock DL (2003). Genome of bovine herpesvirus 5. J Virol 77: 10339–10347.

    Article  CAS  PubMed  Google Scholar 

  • Diel DG, Fonseca ET, Souza SF, Mazzanti A, Bauermann FV, Weiblen R, Flores EF (2005). Bovine herpesvirus 5 may use the olfactory and trigeminal pathways to invade the central nervous system of rabbits, depending upon the route of inoculation. Braz J Vet Res 25: 164–170.

    Google Scholar 

  • Flores EF, Donis RO (1995). Isolation and characterization of a bovine cell line resistent to infection with the pestivirus bovine viral diarrhea virus (BVDV). Virology 208: 565–575.

    Article  CAS  PubMed  Google Scholar 

  • Fuji S, Akaike T, Maeda H (1999). Role of nitric oxide in pathogenesis of herpes simplex virus encephalitis in rats. Virology 256: 203–212.

    Article  Google Scholar 

  • Goody, RJ, Schittone, SA, Tyler, KL (2005). Reovirus infection of the CNS enhances iNOS expression in areas of virus induced injury. Exp. Neurol 195: 379–390.

    Article  CAS  PubMed  Google Scholar 

  • Harris N, Buller RML, Karupiah G (1995). Gamma interferon-induced, nitric oxide-mediated inhibition of vaccinia virus replication. J Virol 69: 910–915.

    CAS  PubMed  Google Scholar 

  • Hooper DC, Kean RB, Scott GS, Spitsin SV, Mikheeva T, Morimoto K, Bette M, Röhrenbeck AM, Dietzschold B, Weihe E (2001). The central nervous system inflammatory response to neurotropic virus infection is peroxynitrite dependent. J Immunol 167: 3470–3477.

    CAS  PubMed  Google Scholar 

  • Kahrs RF (2001). Infectious bovine rhinotracheitis and infectious pustular vulvovaginitis. In: Viral diseases of cattle, 2nd ed. Kahrs RF (ed). Ames, IA: Iowa State University, pp 159–170.

    Google Scholar 

  • Karupiah G, Harris, N (1995). Inhibition of viral replication by nitric oxide and its reversal by ferrous sulfate and tricarboxylic acid cycle metabolites. J Exp Med 181: 2171–2179.

    Article  CAS  PubMed  Google Scholar 

  • Kiechele FL, Malinski T (1993). Nitric oxide: biochemistry, pathophysiology and detection. Am J Clin Pathol 100: 567–575.

    Google Scholar 

  • Kodukula P, Liu T, Van Rooijen N, Jager MJ, Hendricks RL (1999). Macrophage control of herpes simplex virus type 1 replication in the peripheral nervous system. J Immunol 162: 2895–2905.

    CAS  PubMed  Google Scholar 

  • Koprowsky H, Zheng YM, Heber-Katz E, Fraser N, Rorke L, Fu ZF, Hanlon C, Dietzschold B. (1993). In vivo expression of inducible nitric oxide synthase in experimentally induced neurologic diseases. Proc Natl Acad Sci U S A 90: 3024–3027.

    Article  Google Scholar 

  • Marcaccini A, López-Penã M, Bermudez R, Quiroga MI, Guerrero FH, Nieto JM, Aleman N. (2007). Pseudorabies virus induces a rapid up-regulation of nitric oxide synthases in the nervous system of swine. Vet Microbiol 125: 232–243.

    Article  CAS  PubMed  Google Scholar 

  • Marques CP, Cheeran MC, Palmquist JM, Hu S, Lokensgard JR. (2008). Microglia are the major cellular source of inducible nitric oxide synthase during experimental herpes encephalitis. J NeuroVirol 14: 229–238.

    Article  CAS  PubMed  Google Scholar 

  • Marques CP, Hu S, Sheng W, Lokensgard JR. (2006). Microglial cells initiate vigorous yet non-protective immune responses during HSV-1 brain infection. Virus Res 121: 1, 1–10.

    Article  CAS  PubMed  Google Scholar 

  • Meyer G, Lemaire M, Lyaku J (1996). Establishment of a rabbit model for bovine herpesvirus type 5 neurological acute infection. Vet Microbiol 5: 27–40.

    Article  Google Scholar 

  • Minc-Golomb D, Tsafaty I, Schwartz JP, (1994). Expression of inducible nitric oxide synthase by neurons following exposure to endotoxin and cytokine. Braz J Pharmacol 112: 720–722.

    CAS  Google Scholar 

  • Minc-Golomb D, Yalid G, Tsarfaty H, Resau JH, Schwartz JP (1996). In vivo expression of inducible nitric oxide synthase in cerebellar neurons. J Neurochem 66: 1504–1509.

    Article  CAS  PubMed  Google Scholar 

  • Miranda KM, Espey MG, Wink DA (2001). A rapid, simple spectrophotometric method for detection of nitrate and nitrite. Nitric Oxide 5: 62–71.

    Article  CAS  PubMed  Google Scholar 

  • Moro MA, De Alba J, Leza JC, Lorenzo P, Fernandez AP, Bentura ML, Bosca L, Rodrigo J, Lizasoain, I (1998). Neuronal expression of inducible nitric oxide synthase after oxygen and glucose deprivation in rat forebrain slices. Eur J Neurosci 10: 445–456.

    Article  CAS  PubMed  Google Scholar 

  • Oldoni I, Weiblen R, Inkelmann MA, Flores EF (2004). Production and characterization of monoclonal antibodies to a Brazilian bovine herpesvirus type 5 (BHV-5). Braz J Med Biol Res 37: 213–221.

    Article  CAS  PubMed  Google Scholar 

  • Persichini T, Cantoni O, Suzuki H, Colasanti M (2006). Cross-talk between constitutive and inducible NO synthase: an update. Antioxid Redox Signal 8: 949–954.

    Article  CAS  PubMed  Google Scholar 

  • Reed LJ, Muench HA (1938). A simple method of estimating fifty percent endpoints. Am J Hyg 27: 493–497.

    Google Scholar 

  • Rissi DR, Oliveira FN, Rech RR, Pierezan F, Lemos RAA, Barros CSL (2006). Epidemiology, clinical signs and distribution of the encephalic lesions in cattle affected by meningoencephalitis caused by bovine herpesvirus-5. Braz J Vet Res 26: 123–132.

    Google Scholar 

  • Royes LFF, Fighera MR, Furian AF, Oliveira MS, Mysklw JC, Fiorenza NG, Mello CF (2005). Involvement of NO in the convulsive behavior and oxidative damage induced by the intrastriatal injection of methylmalonate. Neurosci Lett 376: 115–120.

    Article  Google Scholar 

  • Saha RN, Pahan K (2006). Regulation of inducible nitric oxide synthase gene in glial cells. Antioxid Redox Signal 8: 929–947.

    Article  CAS  PubMed  Google Scholar 

  • Serrano F, Enquist LW, Card JP (2002). Pseudorabies virusinduced expression of nitric oxide synthase isoforms. Physiol Behav 77: 557–563.

    Article  CAS  PubMed  Google Scholar 

  • Silva AM, Flores EF, Weiblen R, Canto MC, Irigoyen LF, Roehe PM, Souza RS (1999). Pathogenesis of meningoencephalitis in rabbits by bovine herpesvirus type-5 (BHV-5). Rev Bras Microbiol 30: 22–31.

    Google Scholar 

  • Stewart VC, Heales SJ (2003). Nitric oxide-induced mitochondrial dysfunction: implications for neurodegeneration, Free Radic Biol Med 34: 287–303.

    Article  CAS  PubMed  Google Scholar 

  • Studdert MJ (1989). Bovine encephalitis herpesvirus. Vet Rec 125: 584.

    CAS  PubMed  Google Scholar 

  • Ubol S, Sukwattanapan C, Maneerat Y (2001). Inducible nitric oxide synthase inhibition delays death of rabies virus-infected mice. J Med Microbiol 50: 238–242.

    CAS  PubMed  Google Scholar 

  • Vezzani A (2005). Inflammation and epilepsy. Epilepsy Curr 1: 1–6.

    Article  Google Scholar 

  • Vogel FSF, Caron L, Flores EF, Weiblen R, Winkelmann ER, Mayer SV, Bastos RG (2003). Distribution of bovine herpesvirus type 5 DNA in the central nervous systems of latently, experimentally infected calves. J Clin Microbiol 41: 4512–4520.

    Article  CAS  PubMed  Google Scholar 

  • Weiblen R, Barros CS, Canabarro TF, Flores IE (1989). Bovine meningoencephalitis from IBR virus. Vet Rec 25: 124, 666–667.

    Google Scholar 

  • Wong GKT, Marsden PA (1996). Nitric oxide synthases: regulation in disease. Nephrol Dial Transplant 11: 215–220.

    CAS  PubMed  Google Scholar 

  • Zaki MH, Akuta T, Akaike T. (2005). Nitric oxide-induced nitrative stress involved in microbial pathogenesis. J Pharmacol Sci 98: 117–129.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. F. Flores.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dezengrini, R., Weiss, M., Torres, F.D. et al. Bovine herpesvirus 5 induces an overproduction of nitric oxide in the brain of rabbits that correlates with virus dissemination and precedes the development of neurological signs. Journal of NeuroVirology 15, 153–163 (2009). https://doi.org/10.1080/13550280802578067

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1080/13550280802578067

Keywords

Navigation