Skip to main content

Advertisement

Springer Nature Link
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of NeuroVirology
  3. Article

Detection of mouse-adapted human influenza virus in the olfactory bulbs of mice within hours after intranasal infection

  • Published: September 2007
  • Volume 13, pages 399–409, (2007)
  • Cite this article
Download PDF
Journal of NeuroVirology Aims and scope Submit manuscript
Detection of mouse-adapted human influenza virus in the olfactory bulbs of mice within hours after intranasal infection
Download PDF
  • Jeannine A. Majde1,
  • Stewart G. Bohnet1,
  • Georgeann A. Ellis2,
  • Lynn Churchill1,
  • Victor Leyva-Grado1,
  • Melissa Wu1,
  • Eva Szentirmai1,
  • Abdur Rehman1 &
  • …
  • James M. Krueger1 
  • 904 Accesses

  • 4 Altmetric

  • Explore all metrics

Abstract

Influenza pneumonitis causes severe systemic symptoms in mice, including hypothermia and excess sleep. The association of extrapulmonary virus, particularly virus in the brain, with the onset of such disease symptoms has not been investigated. Mature C57BL/6 male mice were infected intranasally with mouse-adapted human influenza viruses (PR8 or X-31) under inhalation, systemic, or no anesthesia. Core body temperatures were monitored continuously by radiotelemetry, and tissues (lung, brain, olfactory bulb, spleen, blood) were harvested at the time of onset of hypothermia (13 to 24 h post infection [PI]) or at 4 or 7 h PI. Whole RNA from all tissues was examined by one or more of three reverse transcriptase-polymerase chain reaction (RT-PCR) procedures using H1N1 nucleoprotein (NP) primers for minus polarity RNA (genomic or vRNA) or plus polarity RNA (replication intermediates). Selected cytokines were assayed at 4, 7, and 15 h in the olfactory bulb (OB). Minus and plus RNA strands were readily detected in OBs as early as 4 h PI by nested RT-PCR. Anesthesia was not required for viral invasion of the OB. Cytokine mRNAs were also significantly elevated in the OB at 7 and 15 h PI in infected mice. Controls receiving boiled virus expressed only input vRNA and that only in lung. Immunohistochemistry demonstrated localization of H1N1 and NP antigens in olfactory nerves and the glomerular layer of the OB. Therefore a mouse-adapted human influenza virus strain, not known to be neurotropic, was detected in the mouse OB within 4 h PI where it appeared to induce replication intermediates and cytokines.

Article PDF

Download to read the full article text

Similar content being viewed by others

Immunological status of the olfactory bulb in a murine model of Toll-like receptor 3-mediated upper respiratory tract inflammation

Article Open access 10 January 2022

The olfactory nerve is not a likely route to brain infection in COVID-19: a critical review of data from humans and animal models

Article Open access 26 April 2021

Phrenic nerve deficits and neurological immunopathology associated with acute West Nile virus infection in mice and hamsters

Article Open access 19 October 2016
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  • Allen WK, Akeson R (1985). Identification of a cell surface glycoprotein family of olfactory receptor neurons with a monoclonal antibody. J Neurosci 5: 284–296.

    CAS  PubMed  Google Scholar 

  • Aronsson F, Robertson B, Ljunggren HG, Kristensson K (2003). Invasion and persistence of the neuroadapted influenza virus A/WSN/33 in the mouse olfactory system. Viral Immunol 16: 415–423.

    Article  CAS  PubMed  Google Scholar 

  • Banks WA (2004). Are the extracellular pathways a conduit for the delivery of therapeutics to the brain? Curr Pharmaceut Design 10: 1365–1370.

    Article  CAS  Google Scholar 

  • Barnett EM, Cassell MD, Perlman S (1993). Two neurotrophic viruses, herpes simplex virus type 1 and mouse hepatitis virus, spread along different neural pathways from the main olfactory bulb. Neuroscience 57: 1007–1025.

    Article  CAS  PubMed  Google Scholar 

  • Barnett EM, Perlman S (1993). The olfactory nerve and not the trigeminal nerve is the major site of CNS entry for mouse hepatitis virus, strain JHM. Virology 194: 185–191.

    Article  CAS  PubMed  Google Scholar 

  • Bohnet SG, Traynor TR, Majde JA, Kacsoh B, Krueger JM (2004). Mice deficient in the interferon type I receptor have reduced REM sleep and altered hypothalamic hypocretin, prolactin and 2′,5′-oligoadenylate synthase expression. Brain Res 1027: 117–125.

    Article  CAS  PubMed  Google Scholar 

  • Bussfeld D, Kaufmann A, Meyer RG, Gemsa D, Sprenger H (1998). Differential mononuclear leukocyte attracting chemokine production after stimulation with active and inactivated influenza A virus. Cell Immunol 186: 1–7.

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Duricka D, Nelson S, Mukherjee S, Bohnet SG, Taishi P, Majde JA, Krueger JM (2004). Influenza virusinduced sleep responses in mice with targeted disruptions in neuronal or inducible nitric oxide synthases. J Appl Physiol 97: 17–28.

    Article  CAS  PubMed  Google Scholar 

  • Churchill L, Yasuda K, Yasuda T, Blindheim K, Falter M, Garcia-Garcia F, Krueger JM (2005). Unilateral cortical application of tumor necrosis factor α induces asymmetry in Fosand interleukin-1β-immunoreactive cells within the corticothalamic projection. Brain Res 1055: 15–24.

    Article  CAS  PubMed  Google Scholar 

  • Conn CA, McClellan JL, Maassab HF, Smitka CW, Majde JA, Kluger MJ (1995). Cytokines and the acute phase response to influenza virus in mice. Am J Physiol 268: R78-R84.

    CAS  PubMed  Google Scholar 

  • Cooper JAD Jr, Carcelen R, Culbreth R (1996). Effects of influenza A nucleoprotein on polymorphonuclear neutrophil function. J Infect Dis 173: 279–284.

    CAS  PubMed  Google Scholar 

  • Dahlin M, Bergman U, Jansson B, Bjork E, Brittebo E (2000). Transfer of dopamine in the olfactory pathway following nasal administration in mice. Pharmaceut Res 17: 737–742.

    Article  CAS  Google Scholar 

  • Diebold SS, Kaisho T, Hemmi H, Akira S, Reis e Sousa C (2004). Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 303: 1529–1531.

    Article  CAS  PubMed  Google Scholar 

  • Fang J, Sanborn CK, Renegar KB, Majde JA, Krueger JM (1995). Influenza viral infections enhance sleep in mice. Proc Soc Exp Biol Med 210: 242–252.

    CAS  PubMed  Google Scholar 

  • Frankova V, Rychterova V (1975). Inhalatory infection of mice with influenza A0/PR8 virus. II. Detection of the virus in the blood and extrapulmonary organs. Acta Virol 19: 35–40.

    CAS  PubMed  Google Scholar 

  • Fujimoto S, Kobayashi M, Uemura O, Iwasa M, Ando T, Katoh T, Nakamura C, Maki N, Togari H, Wada Y (1998). PCR on cerebrospinal fluid to show influenza-associated acute encephalopathy or encephalitis. Lancet 352: 873–875.

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Sastre A, Durbin RK, Zheng H, Palese P, Gertner R, Levy DE, Durbin JE (1998a). The role of interferon in influenza virus tissue tropism. J Virol 72: 8550–8558.

    CAS  PubMed  Google Scholar 

  • Garcia-Sastre A, Egorov A, Matassov D, Brandt S, Levy DE, Durbin JE, Palese P, Muster T (1998b). Influenza A virus lacking the NS1 gene replicates in interferon-deficient systems. Virology 252: 324–330.

    Article  CAS  PubMed  Google Scholar 

  • Haller O, Arnheiter H, Lindenmann J, Gresser I (1980). Host gene influences sensitivity to interferon action selectively for influenza virus. Nature 283: 660–662.

    Article  CAS  PubMed  Google Scholar 

  • Hoffman-Goetz L, Keir R (1985). Fever and survival in aged mice after endotoxin challenge. J Gerontol 40: 15–22.

    CAS  PubMed  Google Scholar 

  • Huneycutt BS, Plakhov IV, Shusterman Z, Bartido SM, Huang A, Reiss CS, Aoki C (1994). Distribution of vesicular stomatitis virus proteins in the brains of BALB/c mice following intranasal inoculation: an immunohistochemical analysis. Brain Res 635: 81–95.

    Article  CAS  PubMed  Google Scholar 

  • Ishida N, Kosaka Y, Sasaki H (1959). Studies on experimental influenza in mice. III. Early distribution of 32P labeled virus in organs of mice after administration from three different routes. Tohoku J Exp Med 71: 163–170.

    Article  CAS  PubMed  Google Scholar 

  • Iwasaki T, Itamura S, Nishimura H, Sato Y, Tashiro M, Hashikawa T, Kurata T (2004). Productive infection in the murine central nervous system with avian influenza virus A (H5N1) after intranasal inoculation. Acta Neuropathol (Berl) 108: 485–492.

    Article  Google Scholar 

  • Johnson RT (1964). The pathogenesis of herpes virus encephalites: I. Virus pathways to the nervous system of suckling mice demonstrated by fluorescent antibody staining. J Exp Med 119: 343–356.

    Article  CAS  PubMed  Google Scholar 

  • Johnson RT, Mims CA (1968). Pathogenesis of viral infections of the nervous system. N Engl J Med 278: 23–30.

    Article  CAS  PubMed  Google Scholar 

  • Kristensson K (2006). Avian influenza and the brain—Comments on the occasion of resurrection of the Spanish flu virus. Brain Res Bull 68: 406–413.

    Article  PubMed  Google Scholar 

  • Lee KH, Youn JW, Kim HJ, Seong BL (2001). Identification and characterization of mutations in the high growth vaccine strain of influenza virus. Arch Virol 146: 369–377.

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Field PM, Raisman G (2005). Olfactory ensheathing cells and olfactory nerve fibroblasts maintain continuous open channels for regrowth of olfactory nerve fibres. Glia 52: 245–251.

    Article  PubMed  Google Scholar 

  • Maines TR, Lu XH, Erb SM, Edwards L, Guarner J, Greer PW, Nguyen DC, Szretter KJ, Chen LM, Thawatsupha P, Chittaganpitch M, Waicharoen S, Nguyen DT, Nguyen T, Nguyen HHT, Kim JH, Hoang LT, Kang C, Phuong LS, Lim W, Zaki S, Donis RO, Cox NJ, Katz JM, Tumpey TM (2005). Avian influenza (H5N1) viruses isolated from humans in Asia in 2004 exhibit increased virulence in mammals. J Virol 79: 11788–11800.

    Article  CAS  PubMed  Google Scholar 

  • Maratou E, Theophilidis G Arsenakis M (1998). Axonal transport of herpes simplex virus-1 in an in vitro model based on the isolated sciatic nerve of the frog Rana ridibunda. J Neurosci Methods 79: 75–78.

    Article  CAS  PubMed  Google Scholar 

  • Maricich SM, Neul JL, Lotze TE, Cazacu AC, Uyeki TM, Demmler GJ, Clark GD (2004). Neurologic complications associated with influenza A in children during the 2003–2004 influenza season in Houston, Texas. Pediatrics 114: e626-e633.

    Article  PubMed  Google Scholar 

  • Mori I, Komatsu T, Takeuchi K, Nakakuki K, Sudo M, Kimura Y (1995). Viremia induced by influenza virus. Microb Pathogen 19: 237–244.

    Article  CAS  Google Scholar 

  • Mori I, Nishiyama Y, Yokochi T, Kimura Y (2005). Olfactory transmission of neurotropic viruses. J NeuroVirol 11: 129–137.

    Article  PubMed  Google Scholar 

  • Newland JG, Laurich VM, Rosenquist AW, Heydon K, Licht DJ, Keren R, Zaoutis TE, Watson B, Hodinka RL, Coffin SE (2007). Neurologic complications in children hospitalized with influenza: characteristics, incidence, and risk factors. J Pediatr 150: 306–310.

    Article  PubMed  Google Scholar 

  • Oberdorster G, Sharp Z, Atudorei V, Elder A, Gelein R, Kreyling W, Cox C (2004). Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol 16: 437–445.

    Article  CAS  PubMed  Google Scholar 

  • Park CH, Ishinaka M, Takada A, Kida H, Kimura T, Ochiai K, Umemura T (2002). The invasion routes of neurovirulent A/Hong Kong/483/97 (H5N1) influenza virus into the central nervous system after respiratory infection in mice. Arch Virol 147: 1425–1436.

    Article  CAS  PubMed  Google Scholar 

  • Price GE, Gaszewska-Mastarlarz A, Moskophidis D (2000). The role of alpha/beta and gamma interferons in development of immunity to influenza A virus in mice. J Virol 74: 3996–4003.

    Article  CAS  PubMed  Google Scholar 

  • Rantalaiho T, Farkkila M, Vaheri A, Koskiniemi M (2001). Acute encephalitis from 1967 to 1991. J Neurol Sci 184: 169–177.

    Article  CAS  PubMed  Google Scholar 

  • Romero JR, Newland JG (2003). Viral meningitis and encephalitis: traditional and emerging viral agents. Semin Pediatr Infect Dis 14: 72–82.

    Article  PubMed  Google Scholar 

  • Samuel CE (2001). Antiviral actions of interferons. Clin Microbiol Rev 14: 778–809.

    Article  CAS  PubMed  Google Scholar 

  • Schlesinger RW, Husak PJ, Bradshaw GL, Panayotov PP (1998). Mechanisms involved in natural and experimental neuropathogenicity of influenza viruses: evidence and speculation. Adv Virus Res 50: 289–379.

    Article  CAS  PubMed  Google Scholar 

  • Stanley ED, Jackson GG (1966). Viremia in Asian influenza. Trans Assoc Am Physicians 79: 376–387.

    CAS  PubMed  Google Scholar 

  • Steininger C, Popow-Kraupp T, Laferl H, Seiser A, Godl I, Djamshidian S, Puchhammer-Stockl E (2003). Acute encephalopathy associated with influenza A virus infection. Clin Infect Dis 36: 567–574.

    Article  PubMed  Google Scholar 

  • Sugaya N (2002). Influenza-associated encephalopathy in Japan. Sem Pediat Infect Dis 13: 79–84.

    Article  Google Scholar 

  • Tanaka H, Park CH, Ninomiya A, Ozaki H, Takada A, Umemura T, Kida H (2003). Neurotropism of the 1997 Hong Kong H5N1 influenza virus in mice. Vet Microbiol 95: 1–13.

    Article  PubMed  Google Scholar 

  • Thorne RG, Emory CR, Ala TA, Frey WH II (1995). Quantitative analysis of the olfactory pathway for drug delivery to the brain. Brain Res 692: 278–282.

    Article  CAS  PubMed  Google Scholar 

  • Traynor TR, Majde JA, Bohnet SG, Krueger JM (2004). Intratracheal double-stranded RNA plus interferongamma: a model for analysis of the acute phase response to respiratory viral infections. Life Sci 74: 2563–2576.

    Article  CAS  PubMed  Google Scholar 

  • Wang YH, Huang YC, Chang LY, Kao HT, Lin PY, Huang CG, Lin TY (2003). Clinical characteristics of children with influenza A virus infection requiring hospitalization. J Microbiol Immunol Infect 36: 111–116.

    PubMed  Google Scholar 

  • Ward AC (1996). Neurovirulence of influenza A virus. J NeuroVirol 2: 139–151.

    Article  CAS  PubMed  Google Scholar 

  • Weitkamp JH, Spring MD, Brogan T, Moses H, Bloch KC, Wright PF (2004). Influenza A virus-associated acute necrotizing encephalopathy in the United States. Pediatr Infect Dis J 23: 259–263.

    Article  PubMed  Google Scholar 

  • Wong JP, Saravolac EG, Clement JG, Nagata LP (1997). Development of a murine hypothermia model for study of respiratory tract influenza virus infection. Lab Anim Sci 47: 143–147.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology, College of Veterinary Medicine, Washington State University, P.O. Box 646520, 99164-6520, Pullman, WA, USA

    Jeannine A. Majde, Stewart G. Bohnet, Lynn Churchill, Victor Leyva-Grado, Melissa Wu, Eva Szentirmai, Abdur Rehman & James M. Krueger

  2. Department of Biological Sciences, College of Sciences and Mathematics, Auburn University, Auburn, Alabama, USA

    Georgeann A. Ellis

Authors
  1. Jeannine A. Majde
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Stewart G. Bohnet
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Georgeann A. Ellis
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Lynn Churchill
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Victor Leyva-Grado
    View author publications

    You can also search for this author in PubMed Google Scholar

  6. Melissa Wu
    View author publications

    You can also search for this author in PubMed Google Scholar

  7. Eva Szentirmai
    View author publications

    You can also search for this author in PubMed Google Scholar

  8. Abdur Rehman
    View author publications

    You can also search for this author in PubMed Google Scholar

  9. James M. Krueger
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to James M. Krueger.

Additional information

This work was supported by the Institute of Child Health and Development NIH grant no. HD36520 and the National Institute of Neurological Disorders and Stroke grant nos. NS25378 and NS31453. Dr. Leyva-Grado was supported by the Direccion General de Apoyo al Personal Academico of the National Autonomous University of Mexico.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Majde, J.A., Bohnet, S.G., Ellis, G.A. et al. Detection of mouse-adapted human influenza virus in the olfactory bulbs of mice within hours after intranasal infection. Journal of NeuroVirology 13, 399–409 (2007). https://doi.org/10.1080/13550280701427069

Download citation

  • Received: 02 February 2007

  • Revised: 27 March 2007

  • Accepted: 29 March 2007

  • Issue Date: September 2007

  • DOI: https://doi.org/10.1080/13550280701427069

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • acute phase response
  • cytokine
  • influenza virus
  • olfactory bulb
  • olfactory nerve
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

65.109.116.201

Not affiliated

Springer Nature

© 2025 Springer Nature