Skip to main content

Advertisement

Log in

The latency-associated transcript of herpes simplex virus type 1 promotes survival and stimulates axonal regeneration in sympathetic and trigeminal neurons

  • Published:
Journal of NeuroVirology Aims and scope Submit manuscript

Abstract

Herpes simplex virus type 1 (HSV-1) primarily infects mucoepithelial tissues of the eye, the orofacial region, and to a lesser extent the genitalia. The virus is retrogradely transported through the axons of sensory and sympathetic neurons to their cell bodies to establishe a life-long latent infection. Throughout this latency period, the viral genome is transcriptionally silent except for a single region encoding the latency-associated transcript (LAT). The function of LAT is still largely unknown. To understand how HSV-1 latency might affect neurons, the authors transfected primary cultures of sympathetic neurons and trigeminal sensory neurons obtained from rat embryos with LAT-expressing plasmids. LAT increased the survival of both sympathetic and trigeminal neurons after induction of cell death by nerve growth factor (NGF) deprivation. Because HSV-1 is transported through axons both after initial infection and during reactivation, the authors considered the possibility that LAT may affect axonal growth. They found that LAT expression increased axonal regeneration by twofold in both types of neurons. Inhibition of the mitogen-activated protein kinase (MAPK) pathway reverses stimulation of both neuronal survival and axonal regeneration, which indicates that these effects are mediated through the MAPK pathway. These data provide evidence that HSV-1 LAT promotes survival of sympathetic as well as trigeminal neurons. The authors show for the first time that LAT stimulates axonal regeneration in both sympathetic and trigeminal neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  • Ahmed M, Lock M, Miller CG, Fraser NW (2002). Regions of the herpes simplex virus type 1 latency-associated transcript that protect cells from apoptosis in vitro and protect neuronal cells in vivo. J Virol 76: 717–729.

    Article  CAS  PubMed  Google Scholar 

  • Anderson CN, Tolkovsky AM (1999). A role for MAPK/ERK in sympathetic neuron survival: protection against a p53-dependent, JNK-independent induction of apoptosis by cytosine arabinoside. J Neurosci 19: 664–673.

    CAS  PubMed  Google Scholar 

  • Baringer JR, Swoveland P (1973). Recovery of herpessimplex virus from human trigeminal ganglions. N Engl J Med 288: 648–650.

    Article  CAS  PubMed  Google Scholar 

  • Bastian FO, Rabson AS, Yee CL, Tralka TS (1972). Herpesvirus hominis: isolation from human trigeminal ganglion. Science 178: 306–307.

    Article  CAS  PubMed  Google Scholar 

  • Block TM, Deshmane S, Masonis J, Maggioncalda J, Valyi-Nagi T, Fraser NW (1993). An HSV LAT null mutant reactivates slowly from latent infection and makes small plaques on CV-1 monolayers. Virology 192: 618–630.

    Article  CAS  PubMed  Google Scholar 

  • Branco FJ, Fraser NW (2005). Herpes simplex virus type 1 latency-associated transcript expression protects trigeminal ganglion neurons from apoptosis. J Virol 79: 9019–9025.

    Article  CAS  PubMed  Google Scholar 

  • Cook ML, Bastone VB, Stevens JG (1974). Evidence that neurons harbor latent herpes simplex virus. Infect Immun 9: 946–951.

    CAS  PubMed  Google Scholar 

  • Deatly AM, Spivack JG, Lavi E, Fraser NW (1987). RNA from an immediate early region of the type 1 herpes simplex virus genome is present in the trigeminal ganglia of latently infected mice. Proc Natl Acad Sci U S A 84: 3204–3208.

    Article  CAS  PubMed  Google Scholar 

  • Doerig C, Pizer LI, Wilcox CL (1991). Detection of the latency-associated transcript in neuronal cultures during the latent infection with herpes simplex virus type 1. Virology 183: 423–426.

    Article  CAS  PubMed  Google Scholar 

  • Doherty P, Williams G, Williams EJ (2000). CAMs and axonal growth: a critical evaluation of the role of calcium and the MAPK cascade. Mol Cell Neurosci 16: 283–295.

    Article  CAS  PubMed  Google Scholar 

  • Drolet BS, Perng GC, Cohen J, Slanina SM, Yukht A, Nesburn AB, Wechsler SL (1998). The region of the herpes-implex virus type 1 LAT gene involved in spontaneous reactivation does not encode a functional protein. Virology 242: 221–232.

    Article  CAS  PubMed  Google Scholar 

  • Farrell MJ, Dobson AT, Feldman LT (1990). Herpes simplex virus latency associated transcript is a stable intron. Proc Natl Acad Sci U S A 88: 790–794.

    Article  Google Scholar 

  • Glebova NO, Ginty DD (2005). Growth and survival signals controlling sympathetic nervous system development. Annu Rev Neurosci 28: 191–222.

    Article  CAS  PubMed  Google Scholar 

  • Goold RG, Gordon-Weeks PR (2004). Glycogen synthase kinase 3 beta and the regulation of axon growth. Biochem Soc Trans 32: 809–811.

    Article  CAS  PubMed  Google Scholar 

  • Gupta A, Gartner JJ, Sethupathy P, Hatzigeorgiou AG, Fraser NW (2006). Antiapoptotic function of a microRNA encoded by the HSV1 latency-associated transcript. Nature 442: 82–85.

    CAS  PubMed  Google Scholar 

  • Hamza MA, Higgins DM, Ruyechan WT (2006). Herpes simplex virus type-1 latency inhibits dendritic growth in sympathetic neurons. Neurobiol Dis 24: 367–373.

    Article  CAS  PubMed  Google Scholar 

  • Higaki S, Gebhardt BM, Lukiw WJ, Thompson HW, Hill JM (2002). Effect of immunosuppression on gene expression in the HSV-1 latently infected mouse trigeminal ganglion. Invest Ophthalmol Vis Sci 43: 1862–1869.

    PubMed  Google Scholar 

  • Higgins D, Lein PJ, Osterhout DJ, Johnson MI (1991) Tissue culture of mammalian autonomic neurons. In: Culturing nerve cells. Banker G, Goslin K (eds). Cambridge, MA: MIT Press, pp 177–205.

    Google Scholar 

  • Inman M, Perng GC, Henderson G, Ghiasi H, Nesburn AB, Wechsler SL, Jones C (2001). Region of herpes simplex virus type 1 latency-associated transcript sufficient for wild-type spontaneous reactivation promotes cell survival in tissue culture. J Virol 75: 3636–3646.

    Article  CAS  PubMed  Google Scholar 

  • Jin L, Peng W, Perng GC, Brick DJ, Nesburn AB, Jones C, Wechsler SL (2003). Identification of herpes simplex virus type 1 latency-associated transcript sequences that both inhibit apoptosis and enhance the spontaneous reactivation phenotype. J Virol 77: 6556–6561.

    Article  CAS  PubMed  Google Scholar 

  • Kent JR, Fraser NW (2005). The cellular response to herpes simplex virus type 1 (HSV-1) during latency and reactivation. J Neuro Virol 11; 376–383.

    CAS  Google Scholar 

  • Kramer MF, Cook WJ, Roth FP, Zhu J, Holman H, Knipe DM, Coen DM (2003). Latent herpes simplex virus infection of sensory neurons alters neuronal gene expression. J Virol 77: 9533–9541.

    Article  CAS  PubMed  Google Scholar 

  • Lagunoff M, Roizman B (1994). Expression of a herpes simplex virus 1 open reading frame antisense to the gamma(1)34.5 gene and transcribed by an RNA 3’ coterminal with the unspliced latency-associated transcript. J Virol 68: 6021–6028.

    CAS  PubMed  Google Scholar 

  • Mazzoni IE, Said FA, Aloyz R, Miller FD, Kaplan D (1999). Ras regulates sympathetic neuron survival by suppressing the p53-mediated cell death pathway. J Neurosci 19: 9716–9727.

    CAS  PubMed  Google Scholar 

  • McGeoch DJ, Dalrymple MA, Dolan A, Frame MC, McNab D, Perry LJ, Scott JE, Taylor P (1988). The complete DNA sequence of the long unique region in the genome of herpes simplex virus type 1. J Gen Virol 69(Pt 7): 1531–1574.

    Article  Google Scholar 

  • Miranda-Saksena M, Armati P, Boadle RA, Holland DJ, Cunningham AL (2000). Anterograde transport of herpes simplex virus type 1 in cultured, dissociated human and rat dorsal root ganglion neurons. J Virol 74: 1827–1839.

    Article  CAS  PubMed  Google Scholar 

  • Mitchell BM, Bloom DC, Cohrs RJ, Gilden DH, Kennedy PG (2003). Herpes simplex virus-1 and varicella-zoster virus latency in ganglia. J NeuroVirol 9: 194–204.

    CAS  PubMed  Google Scholar 

  • Moxley MJ, Block TM, Liu HC, Fraser NW, Perng GC, Wechsler SL, Su YH (2002). Herpes simplex virus type 1 infection prevents detachment of nerve growth factor-differentiated PC12 cells in culture. J Gen Virol 83: 1591–1600.

    CAS  PubMed  Google Scholar 

  • Perng GC, Jones C, Ciacci-Zanella J, Stone M, Henderson G, Yukht A, Slanina SM, Hofman FM, Ghiasi H, Nesburn AB, Wechsler SL (2000). Virus-induced neuronal apoptosis blocked by the herpes simplex virus latency-associated transcript. Science 287: 1500–1503.

    Article  CAS  PubMed  Google Scholar 

  • Riccio A, Pierchala BA, Ciarallo CL, Ginty DD (1997). An NGF-TrkA-mediated retrograde signal to transcription factor CREB in sympathetic neurons. Science 277: 1097–1100.

    Article  CAS  PubMed  Google Scholar 

  • Schillinger JA, Xu F, Sternberg MR, Armstrong GL, Lee FK, Nahmias AJ, McQuillan GM, Louis ME, Markowitz LE (2004). National seroprevalence and trends in herpes simplex virus type 1 in the United States, 1976–1994. Sex Transm Dis 31: 753–760.

    Article  PubMed  Google Scholar 

  • Stevens JG, Wagner EK, Devi-Rao GB, Cook ML, Feldman LT (1987). RNA complementary to a herpesvirus alpha gene mRNA is prominent in latently infected neurons. Science 235: 1056–1059.

    Article  CAS  PubMed  Google Scholar 

  • Thomas SK, Lilley CE, Latchman DS, Coffin RS (2002). A protein encoded by the herpes simplex virus (HSV) type 1 2-kilobase latency-associated transcript is phosphorylated, localized to the nucleus, and overcomes the repression of expression from exogenous promoters when inserted into the quiescent HSV genome. J Virol 76: 4056–4067.

    Article  CAS  PubMed  Google Scholar 

  • Thompson RL, Sawtell NM (1997). The herpes simplex virus type 1 latency-associated transcript gene regulates the establishment of latency. J Virol 71: 5432–5440.

    CAS  PubMed  Google Scholar 

  • Thompson RL, Sawtell NM (2001). Herpes simplex virus type 1 latency-associated transcript gene promotes neuronal survival. J Virol 75: 6660–6675.

    Article  CAS  PubMed  Google Scholar 

  • Ure DR, Campenot RB (1997). Retrograde transport and steady-state distribution of 125I-nerve growth factor in rat sympathetic neurons in compartmented cultures. J Neurosci 17: 1282–1290.

    CAS  PubMed  Google Scholar 

  • Wagner EK, Devi-Rao G, Feldman LT, Dobson AT, Zhang YF, Flanagan WM, Stevens JG (1988). Physical characterization of the herpes simplex virus latency-associated transcript in neurons. J Virol 62: 1194–1202.

    CAS  PubMed  Google Scholar 

  • Warren KG, Brown SM, Wroblewska Z, Gilden D, Koprowski H, Subak-Sharpe J (1978). Isolation of latent herpes simplex virus from the superior cervical and vagus ganglions of human beings. N Engl J Med 298: 1068–1069.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William T. Ruyechan.

Additional information

This work was supported by grants AI18449 (W.T.R.) and AI45679 (L.F.).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamza, M.A., Higgins, D.M., Feldman, L.T. et al. The latency-associated transcript of herpes simplex virus type 1 promotes survival and stimulates axonal regeneration in sympathetic and trigeminal neurons. Journal of NeuroVirology 13, 56–66 (2007). https://doi.org/10.1080/13550280601156297

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1080/13550280601156297

Keywords

Navigation