Skip to main content

Advertisement

Log in

Characterization of West Nile viral replication and maturation in peripheral neurons in culture

  • Published:
Journal of NeuroVirology Aims and scope Submit manuscript

Abstract

The North American West Nile virus (WNV), New York 1999 strain, appears to be highly neurotropic, and its neuroinvasiveness is an important aspect of human disease. The authors have developed an in vitro model to study WNV replication and protein processing in neurons. They compared WNV infection of the dorsal root ganglion (DRG) neurons (sensory neurons) and PC-12 cells (sympathetic neurons) to WNV infection of the mosquito cell line, C6/36, and Vero cells. WNV infection of both neuronal cell types and C6/36 cells was not cytopathic up to 30 days post infection, and continual viral shedding was observed during this period. However, WNV infection of Vero cells was lytic. Interestingly, WNV infection of neurons was not efficient, requiring a high multiplicity of infection of ≥10. Indirect immunofluorescence assays using normal and confocal microscopy with flavivirus-reactive antibodies and WNV-infected neurons demonstrated viral antigen mostly associated with the plasma membrane and in the neurite processes. Treatment of WNV-infected C6/36, PC-12, or DRG cells with brefeldin A (BFA; a trans-Golgi inhibitor) or nocadazole (a β-tubulin inhibitor) had little effect on viral maturation and secretion. Treatment of WNV-infected Vero cells with BFA resulted in a 1000-fold decrease in viral titer, but nocodazole had no effect. Our studies suggest that even though PC-12 and DRG neurons are mammalian cells, viral protein processing and maturation in these cells more closely resembles replication in C6/36 insect cells than in mammalian Vero cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Centers for Disease Control and Prevention (1999). Update: West Nile Virus encephalitis—New York, 1999. MMWR Morb Mortal Wkly Rep 48: 944–946, 955.

    Google Scholar 

  • Anderson JF, Andreadis TG, Vossbrinck CR, Tirrell S, Wakem EM, French RA, Garmendia AE, Van Kruiningen HJ (1999). Isolation of West Nile virus from mosquitoes, crows, and a Cooper’s hawk in Connecticut. Science 286: 2331–2333.

    Article  CAS  PubMed  Google Scholar 

  • Beasley DW, Li L, Suderman MT, Barrett AD (2002). Mouse neuroinvasive phenotype of West Nile virus strains varies depending upon virus genotype. Virology 296: 17–23.

    Article  CAS  PubMed  Google Scholar 

  • Biggerstaff BJ, Petersen LR (2002). Estimated risk of West Nile virus transmission through blood transfusion during an epidemic in Queens, New York City. Transfusion 42: 1019–1026.

    Article  PubMed  Google Scholar 

  • Briese T, Jia XY, Huang C, Grady LJ, Lipkin WI (1999). Identification of a Kunjin/West Nile-like flavivirus in brains of patients with New York encephalitis. Lancet 354: 1261–1262.

    Article  CAS  PubMed  Google Scholar 

  • Brinton MA (1981). Isolation of a replication-efficient mutant of West Nile virus from a persistently infected genetically resistant mouse cell culture. J Virol 39: 413–421.

    CAS  PubMed  Google Scholar 

  • Brinton MA (2002). The molecular biology of West Nile Virus: a new invader of the western hemisphere. Annu Rev Microbiol 56: 371–402.

    Article  CAS  PubMed  Google Scholar 

  • Chu JJ, Ng ML (2002). Infection of polarized epithelial cells with flavivirus West Nile: polarized entry and egress of virus occur through the apical surface. J Gen Virol 83: 2427–2435.

    CAS  PubMed  Google Scholar 

  • Dinter A, Berger EG (1998). Golgi-disturbing agents. Histochem Cell Biol 109: 571–590.

    Article  CAS  PubMed  Google Scholar 

  • Elshuber S, Allison SL, Heinz FX, Mandl CW (2003). Cleavage of protein prM is necessary for infection of BHK-21 cells by tick-borne encephalitis virus. J Gen Virol 84: 183–191.

    Article  CAS  PubMed  Google Scholar 

  • Greene LA, Tischler AS (1976). Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci U S A 73: 2424–2428.

    Article  CAS  PubMed  Google Scholar 

  • Gromeier M, Wimmer E (1998). Mechanism of injury-provoked poliomyelitis. J Virol 72: 5056–5060.

    CAS  PubMed  Google Scholar 

  • He RT, Innis BL, Nisalak A, Usawattanakul W, Wang S, Kalayanarooj S, Anderson R (1995). Antibodies that block virus attachment to Vero cells are a major component of the human neutralizing antibody response against dengue virus type 2. J Med Virol 45: 451–461.

    Article  CAS  PubMed  Google Scholar 

  • Jordan MA, Thrower D, Wilson L (1992). Effects of vinblastine, podophyllotoxin and nocodazole on mitotic spindles. Implications for the role of microtubule dynamics in mitosis. J Cell Sci 102(Pt 3): 401–416.

    CAS  PubMed  Google Scholar 

  • Lanciotti RS, Ebel GD, Deubel V, Kerst AJ, Murri S, Meyer R, Bowen M, McKinney N, Morrill WE, Crabtree MB, Kramer LD, Roehrig JT (2002). Complete genome sequences and phylogenetic analysis of West Nile virus strains isolated from the United States, Europe, and the Middle East. Virology 298: 96–105.

    Article  CAS  PubMed  Google Scholar 

  • Lanciotti RS, Roehrig JT, Deubel V, Smith J, Parker M, Steele K, Crise B, Volpe KE, Crabtree MB, Scherret JH, Hall RA, MacKenzie JS, Cropp CB, Panigrahy B, Ostlund E, Schmitt B, Malkinson M, Banet C, Weissman J, Komar N, Savage HM, Stone W, McNamara T, Gubler DJ (1999). Origin of the West Nile virus responsible for an outbreak of encephalitis in the northeastern United States. Science 286: 2333–2337.

    Article  CAS  PubMed  Google Scholar 

  • Mabit H, Nakano MY, Prank U, Saam B, Dohner K, Sodeik B, Greber UF (2002). Intact microtubules support adenovirus and herpes simplex virus infections. J Virol 76: 9962–9971.

    Article  CAS  PubMed  Google Scholar 

  • Mackenzie JM, Jones MK, Westaway EG (1999). Markers for trans-Golgi membranes and the intermediate compartment localize to induced membranes with distinct replication functions in flavivirus-infected cells. J Virol 73: 9555–9567.

    CAS  PubMed  Google Scholar 

  • Mackenzie JM, Westaway EG (2001). Assembly and maturation of the flavivirus Kunjin virus appear to occur in the rough endoplasmic reticulum and along the secretory pathway, respectively. J Virol 75: 10787–10799.

    Article  CAS  PubMed  Google Scholar 

  • Monath TP, Cropp CB, Harrison AK (1983). Mode of entry of a neurotropic arbovirus into the central nervous system. Reinvestigation of an old controversy. Lab Invest 48: 399–410.

    CAS  PubMed  Google Scholar 

  • Moss B, Ward BM (2001). High-speed mass transit for poxviruses on microtubules. Nat Cell Biol 3: E245-E246.

    Article  CAS  PubMed  Google Scholar 

  • Nash D, Mostashari F, Fine A, Miller J, O’Leary D, Murray K, Huang A, Rosenberg A, Greenberg A, Sherman M, Wong S, Layton M (2001). The outbreak of West Nile virus infection in the New York City area in 1999. N Engl J Med 344: 1807–1814.

    Article  CAS  PubMed  Google Scholar 

  • O’Leary DR, Marfin AA, Montgomery SP, Kipp AM, Lehman JA, Biggerstaff BJ, Elko VL, Collins PD, Jones JE, Campbell GL (2004). The epidemic of West Nile virus in the United States, 2002. Vector-Borne Zoonot Dis 4: 61–70.

    Article  Google Scholar 

  • Pogodina VV, Frolova MP, Malenko GV, Fokina GI, Koreshkova GV, Kiseleva LL, Bochkova NG, Ralph NM (1983). Study on West Nile virus persistence in monkeys. Arch Virol 75: 71–86.

    Article  CAS  PubMed  Google Scholar 

  • Randolph VB, Hardy JL (1988). Establishment and characterization of St Louis encephalitis virus persistent infections in Aedes and Culex mosquito cell lines. J Gen Virol 69(Pt 9): 2189–2198.

    Article  PubMed  Google Scholar 

  • Raux H, Flamand A, Blondel D (2000). Interaction of the rabies virus P protein with the LC8 dynein light chain. J Virol 74: 10212–10216.

    Article  CAS  PubMed  Google Scholar 

  • Sampson BA, Armbrustmacher V (2001). West Nile encephalitis: the neuropathology of four fatalities. Ann N Y Acad Sci 951: 172–178.

    Article  CAS  PubMed  Google Scholar 

  • Sejvar JJ, Haddad MB, Tierney BC, Campbell GL, Marfin AA, Van Gerpen JA, Fleischauer A, Leis AA, Stokic DS, Petersen LR (2003). Neurologic manifestations and outcome of West Nile virus infection. JAMA 290: 511–515.

    Article  PubMed  Google Scholar 

  • Shrestha B, Gottlieb D, Diamond MS (2003). Infection and injury of neurons by West Nile encephalitis virus. J Virol 77: 13203–13213.

    Article  CAS  PubMed  Google Scholar 

  • Smith R, Wilcox C (1996). Studies of herpes simplex virus 1 latency using primary neuronal cultures of dorsal root ganglion neurons. In: Protocols for gene transfer in neuroscience: Towards gene therapy of neurological disorders. Lowenstein PR, Enquist LW (eds). West Sussex, UK: John Wiley & Sons, pp 221–231.

    Google Scholar 

  • Smithburn K, Hughes T, Burke A (1940). A neurotropic virus isolated from the blood of a native of Uganda. Am J Trop Med Hyg 20: 471–492.

    Google Scholar 

  • Solomon T, Willison H (2003). Infectious causes of acute flaccid paralysis. Curr Opin Infect Dis 16: 375–381.

    Article  PubMed  Google Scholar 

  • Sreenivasan V, Ng KL, Ng ML (1993). Brefeldin A affects West Nile virus replication in Vero cells but not C6/36 cells. J Virol Methods 45: 1–17.

    Article  CAS  PubMed  Google Scholar 

  • Stadler K, Allison SL, Schalich J, Heinz FX (1997). Proteolytic activation of tick-borne encephalitis virus by furin. J Virol 71: 8475–8481.

    CAS  PubMed  Google Scholar 

  • Vasquez RJ, Howell B, Yvon AM, Wadsworth P, Cassimeris L (1997). Nanomolar concentrations of nocodazole alter microtubule dynamic instability in vivo and in vitro. Mol Biol Cell 8: 973–985.

    CAS  PubMed  Google Scholar 

  • Vetterlein M, Niapir M, Ellinger A, Neumuller J, Pavelka M (2003). Brefeldin A-regulated retrograde transport into the endoplasmic reticulum of internalised wheat germ agglutinin. Histochem Cell Biol 120: 121–128.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth Hunsperger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hunsperger, E., Roehrig, J.T. Characterization of West Nile viral replication and maturation in peripheral neurons in culture. Journal of NeuroVirology 11, 11–22 (2005). https://doi.org/10.1080/13550280590900454

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1080/13550280590900454

Keywords

Navigation