Skip to main content

Advertisement

Log in

The latency-related gene encoded by bovine herpesvirus 1 can suppress caspase 3 and caspase 9 cleavage during productive infection

  • Short Communication
  • Published:
Journal of NeuroVirology Aims and scope Submit manuscript

Abstract

When the bovine herpesvirus 1 (BHV-1) latency-related (LR) gene is inserted into the latency-associated transcript (LAT) locus of a herpes simplex virus type 1 (HSV-1) LAT deletion mutant, high levels of spontaneous reactivation from latency and enhanced pathogenesis occur. The LR gene, but not LAT, inhibits caspase 3 cleavage during productive infection. Plasmids containing LAT or the LR gene inhibit caspase 3 activation in transiently transfected cells, suggesting productive infection blocks certain antiapoptotic properties of LAT. These studies demonstrate a correlation between the enhanced pathogenic potential of CJLAT and the LR gene inhibiting caspase 3 cleavage during productive infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Ahmed M, Lock M, Miller CG, Fraser NW (2002). Regions of the herpes simplex virus type 1 latency-associated transcript that protect cells from apoptosis in vitro and protect neuronal cells in vivo. J Virol 76: 717–729.

    Article  PubMed  CAS  Google Scholar 

  • Blaho JA, Aubert M (2001). Modulation of apoptosis during herpes simplex virus infection in human cells. Microbes Infec 3: 1–8.

    Google Scholar 

  • Chenet-Monte C, Mohammad F, Celluzzi CM, Schaffer PA, Farber FE (1986). Herpes simplex virus gene products involved in the induction of chromosomal aberrations. Virus Res 6: 245–260.

    Article  PubMed  CAS  Google Scholar 

  • Ciacci-Zanella J, Stone M, Henderson G, Jones C (1999). The latency-related gene of bovine herpesvirus 1 inhibits programmed cell death. J Virol 73: 9734–9740.

    PubMed  CAS  Google Scholar 

  • Cowan CM, Thai J, Krajewski S, Reed JC, Nicholson DW, Kaufmann SH, Roskams AJ (2001). Caspases 3 and 9 send a pro-apoptotic signal from synapse to cell body in olfactory receptor neurons. J Neurosci 21: 7099–7109.

    PubMed  CAS  Google Scholar 

  • Devireddy L (1999). Analysis of transcription and latency of alpha herpesviruses: identification of a neuronal-specific latency-related transcript that promotes latency and a cellular transcription factor that stimulates immediate early transcription. In: Department of Veterinary and Biomedical Sciences Communications. Lincoln, NE: University of Nebraska—Lincoln Press, pp. 309.

    Google Scholar 

  • Devireddy LR, Jones C (1998). Alternative splicing of the latency-related transcript of bovine herpesvirus 1 yields RNAs containing unique open reading frames. J Virol 72: 7294–7301.

    PubMed  CAS  Google Scholar 

  • Galvan V, Roizman B (1998). Herpes simplex virus 1 induces and blocks apoptosis at multiple steps during infection and protects cells from exogenous inducers in a cell-type-dependent manner. Proc Natl Acad Sci U S A 95: 3931–3936.

    Article  PubMed  CAS  Google Scholar 

  • Hagglund R, Munger J, Poon AP, Roizman B (2002). U(S)3 protein kinase of herpes simplex virus 1 blocks caspase 3 activation induced by the products of U(S)1.5 and U(L)13 genes and modulates expression of transduced U(S)1.5 open reading frame in a cell type-specific manner. J Virol 76: 743–754.

    Article  PubMed  CAS  Google Scholar 

  • Hakem R, Hakem A, Duncan GS, Henderson JT, Woo M, Soengas MS, Elia A, de la Pompa JL, Kagi D, Khoo W, Potter J, Yoshida R, Kaufman SA, Lowe SW, Penninger JM, Mak TW (1998). Differential requirement for caspase 9 in apoptotic pathways in vivo. Cell 94: 339–352.

    Article  PubMed  CAS  Google Scholar 

  • Hampar B, Ellison SA (1961). Chromosomal aberrations induced by an animal virus. Nature 192: 145–147.

    Article  PubMed  CAS  Google Scholar 

  • Heilbronn R, zur Hausen H (1989). A subset of herpes simplex virus replication genes induces DNA amplification within the host cell genome. J Virol 63: 3683–3692.

    PubMed  CAS  Google Scholar 

  • Henderson G, Peng W, Jin L, Perng G-C, Nesburn AB, Wechsler SL, Jones C (2002). Regulation of caspase 8- and caspase 9-induced apoptosis by the herpes simplex virus latency-associated transcript. J NeuroVirol 8: 103–111.

    Article  PubMed  CAS  Google Scholar 

  • Hossain A, Schang LM, Jones C (1995). Identification of gene products encoded by the latency-related gene of bovine herpesvirus 1. J Virol 69: 5345–5352.

    PubMed  CAS  Google Scholar 

  • Inman M, Lovato L, Doster A, Jones C (2001a). A mutation in the latency-related gene of bovine herpesvirus 1 leads to impaired ocular shedding in acutely infected calves. J Virol 75: 8507–8515.

    Article  PubMed  CAS  Google Scholar 

  • Inman M, Lovato L, Doster A, Jones C (2002). A mutation in the latency related gene of bovine herpesvirus 1 interferes with the latency-reactivation cycle of latency in calves. J Virol 76: 6771–6779.

    Article  PubMed  CAS  Google Scholar 

  • Inman M, Perng GC, Henderson G, Ghiasi H, Nesburn AB, Wechsler SL, Jones C (2001b). Region of herpes simplex virus type 1 latency-associated transcript sufficient for wild-type spontaneous reactivation promotes cell survival in tissue culture. J Virol 75: 3636–3646.

    Article  PubMed  CAS  Google Scholar 

  • Jiang Y, Hossain A, Winkler MT, Holt T, Doster A, Jones C (1998). A protein encoded by the latency-related gene of bovine herpesvirus 1 is expressed in trigeminal ganglionic neurons of latently infected cattle and interacts with cyclin-dependent kinase 2 during productive infection. J Virol 72: 8133–8142.

    PubMed  CAS  Google Scholar 

  • Jin L, Peng W, Perng G-C, Nesburn AB, Jones C, Wechsler SL (2003). Identification of herpes simplex virus type 1 (HSV-1) latency associated transcript (LAT) sequences that both inhibit apoptosis and enhance the spontaneous reactivation phenotype. J Virol 77: 6556–6561.

    Article  PubMed  CAS  Google Scholar 

  • Jones C (1998). Alphaherpesvirus latency: its role in disease and survival of the virus in nature. Adv Virus Res 51: 81–133.

    Article  PubMed  CAS  Google Scholar 

  • Keane RW, Kraydieh S, Lotocki G, Bethea JR, Krajewski S, Reed JC, Dietrich WD (2001). Apoptotic and anti-apoptotic mechanisms following spinal cord injury. J Neuropathol Exp Neurol 60: 422–429.

    PubMed  CAS  Google Scholar 

  • Kermer P, Ankerhold R, Klocker N, Krajewski S, Reed JC, Bahr M (2000). Caspase-9: involvement in secondary death of axotomized rat retinal ganglion cells in vivo. Brain Res Mol Brain Res 85: 144–150.

    Article  PubMed  CAS  Google Scholar 

  • Krajewski S, Krajewska M, Ellerby LM, Welsh K, Xie Z, Deveraux QL, Salvesen GS, Bredesen DE, Rosenthal RE, Fiskum G, Reed JC (1999). Release of caspase-9 from mitochondria during neuronal apoptosis and cerebral ischemia. Proc Natl Acad Sci U S A 96: 5752–5757.

    Article  PubMed  CAS  Google Scholar 

  • Kruegger A, Baumann S, Krammer PH, Kirchhoff S (2001). FLICE-Inhibitory proteins: regulators of death receptor-mediated apoptosis. Mol Cell Biol 21: 8247–8254.

    Article  Google Scholar 

  • Kuida K, Haydar TF, Kuan CY, Gu Y, Taya C, Karasuyama H, Su MS, Rakic P, Flavell RA (1998). Reduced apoptosis and cytochrome c-mediated caspase activation in mice lacking caspase 9. Cell 94: 325–337.

    Article  PubMed  CAS  Google Scholar 

  • Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X (1997). Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91: 479–489.

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Kim CN, Yang J, Jemmerson R, Wang X (1996). Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86: 147–157.

    Article  PubMed  CAS  Google Scholar 

  • Mador N, Goldenberg D, Cohen O, Panet A, Steiner I (1998). Herpes simplex virus type 1 latency-associated transcripts suppress viral replication and reduce immediate-early gene mRNA levels in a neuronal cell line. J Virol 72: 5067–5075.

    PubMed  CAS  Google Scholar 

  • Maggioncalda J, Mehta A, Su YH, Fraser NW, Block TM (1996). Correlation between herpes simplex virus type 1 rate of reactivation from latent infection and the number of infected neurons in trigeminal ganglia. Virology 225: 72–81.

    Article  PubMed  CAS  Google Scholar 

  • Nicholson DW, Thornberry NA (1997). Caspases: killer proteases. Trends Biochem Sci 22: 299–306.

    Article  PubMed  CAS  Google Scholar 

  • Olmsted JB, Carlson K, Klebe R, Ruddle F, Rosenbaum J (1970). Isolation of microtubule protein from cultured mouse neuroblastoma cells. Proc Natl Acad Sci U S A 65: 129–136.

    Article  PubMed  CAS  Google Scholar 

  • Perng GC, Dunkel EC, Geary PA, Slanina SM, Ghiasi H, Kaiwar R, Nesburn AB, Wechsler SL (1994). The latency-associated transcript gene of herpes simplex virus type 1 (HSV-1) is required for efficient in vivo spontaneous reactivation of HSV-1 from latency. J Virol 68: 8045–8055.

    PubMed  CAS  Google Scholar 

  • Perng GC, Ghiasi H, Slanina SM, Nesburn AB, Wechsler SL (1996). The spontaneous reactivation function of the herpes simplex virus type 1 LAT gene resides completely within the first 1.5 kilobases of the 8.3-kilobase primary transcript. J Virol 70: 976–984.

    PubMed  CAS  Google Scholar 

  • Perng G-C, Jones C, Ciacci-Zanella J, Stone M, Henderson G, Yukht A, Slanina SM, Hoffman FM, Ghiasi H, Nesburn AB, Wechsler S (2000). Virus-induced neuronal apoptosis blocked by the herpes simplex virus latency-associated transcript (LAT). Science 287: 1500–1503.

    Article  PubMed  CAS  Google Scholar 

  • Perng G-C, Maguen B, Jin L, Mott KR, Osorio N, Slanina SM, Yukht A, Ghiasi H, Nesburn AB, Inman M, Henderson G, Jones C, Wechsler SL (2002). A gene capable of blocking apoptosis can substitute for the herpes simplex virus type 1 latency-associated transcript gene and restore wild-type reactivation levels. J Virol 76: 1224–1235.

    Article  PubMed  CAS  Google Scholar 

  • Perng GC, Slanina SM, Yukht A, Ghiasi H, Nesburn AB, Wechsler SL (2000). The latency-associated transcript gene enhances establishment of herpes simplex virus type 1 latency in rabbits. J Virol 74: 1885–1891.

    Article  PubMed  CAS  Google Scholar 

  • Pilon L, Langelier Y, Royal A (1986). Herpes simplex virus type 2 mutagenesis: characterization of mutants induced at the hprt locus of nonpermissive XC cells. Mol Cell Biol 6: 2977–2983.

    PubMed  CAS  Google Scholar 

  • Rigamonti D, Sipione S, Goffredo D, Zuccato C, Fossale E, Cattaneo E (2001). Huntingtin’s neuroprotective activity occurs via inhibition of procaspase-9 processing. J Biol Chem 276: 14545–14548.

    Article  PubMed  CAS  Google Scholar 

  • Rock DL, Beam SL, Mayfield JE (1987). Mapping bovine herpesvirus type 1 latency-related RNA in trigeminal ganglia of latently infected rabbits. J Virol 61: 3827–3831.

    PubMed  CAS  Google Scholar 

  • Rock DL, Nesburn AB, Ghiasi H, Ong J, Lewis TL, Lokensgard JR, Wechsler SL (1987). Detection of latency-related viral RNAs in trigeminal ganglia of rabbits latently infected with herpes simplex virus type 1. J Virol 61: 3820–3826.

    PubMed  CAS  Google Scholar 

  • Sawtell NM (1997). Comprehensive quantification of herpes simplex virus latency at the single-cell level. J Virol 71: 5423–5431.

    PubMed  CAS  Google Scholar 

  • Sawtell NM, Thompson RL (1992). Herpes simplex virus type 1 latency-associated transcription unit promotes anatomical site-dependent establishment and reactivation from latency. J Virol 66: 2157–2169.

    PubMed  CAS  Google Scholar 

  • Schang LM, Hossain A, Jones C (1996). The latency-related gene of bovine herpesvirus 1 encodes a product which inhibits cell cycle progression. J Virol 70: 3807–3814.

    PubMed  CAS  Google Scholar 

  • Schlehofer JR, Hausen JZ (1982). Induction of mutations within the host cell genome by partially inactivated herpes simplex virus type 1. Virology 122: 471–475.

    Article  PubMed  CAS  Google Scholar 

  • Schmitz I, Kirchhoff S, Krammer PH (2000). Regulation of death receptor-mediated apoptosis pathways. Int J Biochem Cell Biol 32: 1123–1136.

    Article  PubMed  CAS  Google Scholar 

  • Soengas MS, Alarcon RM, Yoshida H, Giaccia AJ, Hakem R, Mak TW, Lowe SW (1999). Apaf-1 and caspase-9 in p53-dependent apoptosis and tumor inhibition. Science 284: 156–159.

    Article  PubMed  CAS  Google Scholar 

  • Thompson RL, Sawtell NM (2001). Herpes simplex virus type 1 latency-associated transcript gene promotes neuronal survival. J Virol 75: 6660–6675.

    Article  PubMed  CAS  Google Scholar 

  • Thompson RL, Sawtell NM (1997). The herpes simplex virus type 1 latency-associated transcript gene regulates the establishment of latency. J Virol 71: 5432–5440.

    PubMed  CAS  Google Scholar 

  • Thornberry NA, Rosen A, Nicholson DW (1997). Control of apoptosis by proteases. Adv Pharmacol 41: 155–177.

    Article  PubMed  CAS  Google Scholar 

  • Wang X (2001). The expanding role of mitochondria in apoptosis. Genes Dev 15: 2922–2933.

    PubMed  CAS  Google Scholar 

  • White E (1996). Life, death, and the pursuit of apoptosis. Genes Dev 10: 1–15.

    Article  PubMed  CAS  Google Scholar 

  • Wolf BB, Green DR (1999). Suicidal tendencies: apoptotic cell death by caspase family proteinases. J Biol Chem 274: 20049–20052.

    Article  PubMed  CAS  Google Scholar 

  • Zou H, Li Y, Liu X, Wang X (1999). An APAF-1.cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J Biol Chem 274: 11549–11556.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clinton Jones.

Additional information

This study was supported by the Discovery Fund for Eye Research, the Skirball Program in Molecular Ophthalmology, Public Health Service grants to SW (EY11629, and EY12823) and CJ (1P20RR15635), and USDA grants to CJ (2000-02060, 2002-02450, and 2003-02213).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Henderson, G., Perng, GC., Nesburn, A.B. et al. The latency-related gene encoded by bovine herpesvirus 1 can suppress caspase 3 and caspase 9 cleavage during productive infection. Journal of NeuroVirology 10, 64–70 (2004). https://doi.org/10.1080/13550280490261716

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1080/13550280490261716

Keywords

Navigation