Skip to main content

Advertisement

Log in

The reverse transcriptase sequence of human immunodeficiency virus type 1 is under positive evolutionary selection within the central nervous system

  • Published:
Journal of NeuroVirology Aims and scope Submit manuscript

Abstract

The human immunodeficiency virus type 1 (HIV-1) enters the central nervous system (CNS) during the acute phase of infection and causes AIDS-related encephalitis and dementia in 30% of individuals. Previous studies show that HIV-1 sequences derived from the CNS of infected patients, including the sequence encoding reverse transcriptase (RT), are genetically distinct from sequences in other tissues. The hypothesis of the current study is that the RT sequence of HIV-1 is under positive selection within the CNS. Multiple alignments of non-CNS-derived and CNS-derived HIV-1 RT sequences were constructed using the ClustalW 1.8 program. The multiple alignments were analyzed with the Synonymous/Nonsynonymous Analysis Program. Codon positions 122–125, 135–149, and 166–212 of the CNS-derived RT sequences underwent a greater accumulation of nonsynonymous than synonymous substitutions, which was markedly different from the analysis results of the non-CNS-derived RT sequences. These residues are located in the finger and palm subdomains of the RT protein structure, which encodes the polymerase active site. The analysis of CNS-derived partial-length RT sequences that encompass these regions yielded similar results. A comparison of CNS-derived RT sequences to a non-CNS-derived RT consensus sequence revealed that a majority of the nonsynonymous substitutions resulted in a specific amino acid replacement. These results indicate that reverse transcriptase is under positive selection within the CNS. The amino acid replacements were visualized on a three-dimensional structure of HIV-1 RT using the Sybyl software suite. The protein structure analysis revealed that the amino acid replacements observed among the CNS-derived sequences occurred in areas of known structural and functional significance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • An SF, Groves M, Gray F, Scaravilli F (1999). Early entry and widespread cellular involvement of HIV-1 DNA in brains of HIV-1 positive asymptomatic individuals. J Neuropathol Exp Neurol 58: 1156–1162.

    Article  CAS  PubMed  Google Scholar 

  • Ball JK, Holmes EC, Whitwell H, Desselberger U (1994). Genomic variation of human immunodeficiency virus type 1 (HIV-1): Molecular analyses of HIV-1 in sequential blood samples and various organs obtained at autopsy. J Gen Virol 75: 67–79.

    Article  PubMed  Google Scholar 

  • Boyer PL, Hughes SH (2000). Effects of amino acid substitutions at position 115 on the fidelity of human immunodeficiency virus type 1 reverse transcriptase. J Virol 74: 6494–6500.

    Article  CAS  PubMed  Google Scholar 

  • Bratanich AC, Liu C, McArthur JC, Fudyk T, Glass JD, Mittoo S, Klassen GA, Power C (1998). Brain-derived HIV-1 tat sequences from AIDS patients with dementia show increased molecular heterogeneity. J NeuroVirol 4: 387–393.

    Article  CAS  PubMed  Google Scholar 

  • Carr J, Avila M, Gomez-Carrillo M, Salomon H, Hierholzer J, Watanaveeradej V, Pando M, Negrete M, Russell K, Russell KL, Sanchez, J, Birx D, Birx DL, Andrade R, Vinoles J, McCutchan F, McCutchan FE (2001). [online] (http://hiv-web.lanl.gov/)

  • Cases-Gonzalez CE, Gutierrez-Rivas M, Menendez-Arias L (2000). Coupling ribose selection to fidelity of DNA synthesis. The role of Tyr-115 of human immunodeficiency virus type 1 reverse transcriptase. J Biol Chem 275: 19759–19767.

    Article  CAS  PubMed  Google Scholar 

  • Corboy JR, Garl PJ (1997). HIV-1 LTR DNA sequence variation in brain-derived isolates. J NeuroVirol 5: 331–341.

    Article  Google Scholar 

  • Cunningham PH, Smith DG, Satchell C, Cooper DA, Brew B (2000). Evidence for independent development of resistance to HIV-1 reverse transcriptase inhibitors in the cerebrospinal fluid. AIDS 14: 1949–1954.

    Article  CAS  PubMed  Google Scholar 

  • Ding J, Hughes SH, Arnold E (1997). Protein-nucleic acid interactions and DNA conformation in a complex of human immunodeficiency virus type 1 reverse transcriptase with a double-stranded DNA template-primer. Biopolymers 44: 125–138.

    Article  CAS  PubMed  Google Scholar 

  • Di Stefano M, Gray F, Leitner T, Chiodi F (1996). Analysis of ENV V3 sequences from HIV-1-infected brain indicates restrained virus expression throughout the disease. J Med Virol 49: 41–48.

    Article  CAS  PubMed  Google Scholar 

  • Ellis RJ, Gamst AC, Capparelli E, Spector SA, Hsia K, Wolfson T, Abramson I, Grant I, McCutchan JA (2000). Cerebrospinal fluid HIV RNA originates from both local CNS and systemic sources. Neurology 54: 927–936.

    CAS  PubMed  Google Scholar 

  • Epstein LG, Kuiken C, Blumberg BM, Hartman S, Sharer LR, Clement M, Goudsmit J (1991). HIV-1 V3 domain variation in brain and spleen of children with AIDS: Tissue-specific evolution within host-determined quasispecies. Virology 180: 583–590.

    Article  CAS  PubMed  Google Scholar 

  • Ganeshan S, Dickover RE, Korber BT, Bryson YJ, Wolinsky SM (1997). Human immunodeficiency virus type 1 genetic evolution in children with different rates of development of disease. J Virol 71: 663–677.

    CAS  PubMed  Google Scholar 

  • Gatanaga H, Oka S, Ida S, Wakabayashi T, Shioda T, Iwamoto A (1999). Active HIV-1 redistribution andreplication in the brain with HIV encephalitis. Arch Virol 144: 29–43.

    Article  CAS  PubMed  Google Scholar 

  • Gisslen M, Hagberg L, Norkrans G, Lekman A, Fredman P (1997). Increased cerebrospinal fluid ganglioside GM1 concentrations indicating neuronal involvement in all stages of HIV-1 infection. J NeuroVirol 3: 148–152.

    Article  CAS  PubMed  Google Scholar 

  • Glass JD, Wesselingh SL, Seines OA, McArthur JC (1993). Clinical-neuropathologic correlation in HIV-associated dementia. Neurology 43: 2230–2237.

    CAS  PubMed  Google Scholar 

  • Guillon C, Bedin F, Fouchier RAM, van’t Wout AB, Guters RA (1995). [online] http://hiv-web.lanl.gov/

  • Haas DW, Clough LA, Johnson BW, Harris VL, Spearman P, Wilkinson GR, Fletcher CV, Fiscus S, Raffanti S, Donlon R, McKinsey J, Nicotera J, Schmidt D, Shoup RE, Kates RE, Lloyd RM, Jr, Larder B (2000). Evidence of a source of HIV type 1 within the central nervous system by ultraintensive sampling of cerebrospinal fluid and plasma. AIDS Res Hum Retroviruses 16: 1491–1502.

    Article  CAS  PubMed  Google Scholar 

  • Haas J (1993). [online] (http://hiv-web.lanl.gov/)

  • Halvas EK, Svarovskaia ES, Pathak VK (2000). Role of murine leukemia virus reverse transcriptase deoxyribonucleoside triphosphate-binding site in retroviral replication and in vivo fidelity. J Virol 74: 10349–10358.

    Article  CAS  PubMed  Google Scholar 

  • Huang H, Chopra R, Verdine GL, Harrison SC (1998). Structure of a covalently trapped catalytic complex of HIV-1 reverse transcriptase: Implications for drug resistance. Science 282: 1669–1675.

    Article  CAS  PubMed  Google Scholar 

  • Iftimovici E, Rabian C, Burgard M, Peytavin G, Rouzioux C, Viard JP (1998). Longitudinal comparison of HIV-1 RNA burden in plasma and cerebrospinal fluid in two patients starting triple combination antiretroviral therapy. AIDS 12: 535–537.

    CAS  PubMed  Google Scholar 

  • Jeanmougin F, Thompson JD, Gouy M, Higgins DG, Gibson TJ (1998). Multiple sequence alignment with Clustal X. Trends Riochem Sci 23: 403–405.

    Article  CAS  Google Scholar 

  • Jonckheere H, De Clercq E, Anne J (2000). Fidelity analysis of HIV-1 reverse transcriptase mutants with an altered amino-acid sequence at residues Leu74, Glu89, Tyr115, Tyr183 and Met184. Eur J Riochem 267: 2658–2665.

    CAS  Google Scholar 

  • Julias JG, Pathak VK (1998). Deoxyribonucleoside triphosphate pool imbalances in vivo are associated with an increased retroviral mutation rate. J Virol 72: 7941–7949.

    CAS  PubMed  Google Scholar 

  • Kaushik N, Talele TT, Pandey PK, Harris D, Yadav PN, Pandey VN (2000). Role of glutamine 151 of human immunodeficiency virus type-1 reverse transcriptase in substrate selection as assessed by site-directed mutagenesis. Biochemistry 39: 2912–2920.

    Article  CAS  PubMed  Google Scholar 

  • Kim B, Ayran JC, Sagar SG, Adman ET, Fuller SM, Tran NH, Horrigan J (1999). New human immunodeficiency virus, type 1 reverse transcriptase (HIV-1 RT) mutants with increased fidelity of DNA synthesis. Accuracy, template binding, and processivity. J Biol Chem 274: 27666–27673.

    Article  CAS  PubMed  Google Scholar 

  • Kohlstaedt LA, Wang J, Friedman JM, Rice PA, and Steitz TA (1992). Crystal structures at 3.5 Å resolution of HIV-1 reverse transcriptase complexed with an inhibitor. Science 256: 1783–1790.

    Article  CAS  PubMed  Google Scholar 

  • Korber B (1994a). Computational analysis of HIV molecular sequences. In HIV signature and sequence variation analysis. Rodrigo AG, Learn GH (eds). Kluwer Academic Publishers: Dordrecht, Netherlands, pp 55–72.

    Google Scholar 

  • Korber BT, Kunstman KJ, Patterson BK, Furtado M, McEvilly MM, Levy R, Wolinsky SM (1994b). Genetic differences between blood- and brain-derived viral sequences from human immunodeficiency virus type 1-infected patients: Evidence of conserved elements in the V3 region of the envelope protein of brain-derived sequences. J Virol 68: 7467–7481.

    CAS  PubMed  Google Scholar 

  • Krebs FC, Mehrens D, Pomeroy S, Goodenow MM, Wigdahl B (1998). Human immunodeficiency virus type 1 long terminal repeat quasispecies differ in basai transcription and nuclear factor recruitment in human glial cells and lymphocytes. J Biomed Sci 5: 31–44.

    Article  CAS  PubMed  Google Scholar 

  • Lewis DA, Bebenek K, Beard WA, Wilson SH, Kunkel TA (1999). Uniquely altered DNA replication fidelity conferred by an amino acid change in the nucleotide binding pocket of human immunodeficiency virus type 1 reverse transcriptase. J Biol Chem 274: 32924–32930.

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Kappes JC, Conway JA, Price RW, Shaw GM (1992). [online] http://hiv-web.lanl.gov/

  • Liu C, Power C (1996). [online] http://hiv-web.lanl.gov/

  • Lukashov VV (2000). [online] http://hiv-web.lanl.gov/

  • Mansky LM, Temin HM (1995). Lower in vivo mutation rate of human immunodeficiency virus type 1 than that predicted from the fidelity of purified reverse transcriptase. J Virol 69: 5087–5094.

    CAS  PubMed  Google Scholar 

  • Masliah E, DeTeresa RM, Mallory ME, Hansen LA (2000). Changes in pathological findings at autopsy in AIDS cases for the last 15 years. AIDS 14: 69–74.

    Article  CAS  PubMed  Google Scholar 

  • Matala E (1996). [online] http://hiv-web.lanl.gov/

  • McArthur JC (1987). Neurologic manifestations of AIDS. Medicine 66: 407–437.

    Article  CAS  PubMed  Google Scholar 

  • McArthur JC, Becker PS, Parisi JE, Trapp B, Selnes OA, Cornblath DR, Balakrishnan J, Griffin JW, Price D (1989). Neuropathological changes in early HIV-1 dementia. Ann Neurol 26: 681–684.

    Article  CAS  PubMed  Google Scholar 

  • Morris A, Marsden M, Halcrow K, Hughes ES, Brettle RP, Bell JE, Simmonds P (1999). Mosaic structure of the human immunodeficiency virus type 1 genome infecting lymphoid cells and the brain: Evidence for frequent in vivo recombination events in the evolution of regional populations. J Virol 73: 8720–8731.

    CAS  PubMed  Google Scholar 

  • Najera I, Holguin A, Quinones-Mateu ME, Munoz-Fernandez MA, Najera R, Lopez Galindez C, Domingo E (1995). Pol gene quasispecies of human immunodeficiency virus: Mutations associated with drug resistance in virus from patients undergoing no drug therapy. J Virol 69: 23–31.

    CAS  PubMed  Google Scholar 

  • Nei M, Gojobori T (1986). Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 3: 418–426.

    CAS  PubMed  Google Scholar 

  • O’Brien WA, Koyanagi Y, Namazie A, Zhao JQ, Diagne A, Idler K, Zack JA, Chen ISY (1991). [online] http://hiv-web.lanl.gov/

  • Oelrichs RB, Mcphee DA, Deacon NJ (1998). [online] http://hiv-web.lanl.gov/

  • Ota T, Nei M (1994). Variance and covariances of the numbers of synonymous and nonsynonymous substitutions per site. Mol Biol Evol 11: 613–619.

    CAS  PubMed  Google Scholar 

  • Pang S, Vinters HV, Akashi T, O’Brien WA, Chen IS (1991). HIV-1 env sequence variation in brain tissue of patients with AIDS-related neurologic disease. J Acquir Immune Defic Syndr 4: 1082–1092.

    CAS  PubMed  Google Scholar 

  • Power C, McArthur JC, Johnson RT, Griffin DE, Glass JD, Dewey R, Chesebro B (1995). Distinct HIV-1 env sequences are associated with neurotropism and neurovirulence. Curr Top Microbiol Immunol 202: 89–104.

    CAS  PubMed  Google Scholar 

  • Sarafianos SG, Das K, Ding J, Boyer PL, Hughes SH, Arnold E (1999). Touching the heart of HIV-1 drug resistance: The fingers close down on the dNTP at the polymerase active site. Chem Biol 6: R137–146.

    Article  CAS  PubMed  Google Scholar 

  • Shafer RW, Stevenson D, Chan B (1999). Human immunodeficiency virus reverse transcriptase and protease sequence database. Nucleic Acids Res 27: 348–352.

    Article  CAS  PubMed  Google Scholar 

  • Shah FS, Curr KA, Hamburgh ME, Parniak M, Mitsuya H, Arnez JG, Prasad VR (2000). Differential influence of nucleoside analog-resistance mutations K65R and L74V on the overall mutation rate and error specificity of human immunodeficiency virus type 1 reverse transcriptase. J Biol Chem 275: 27037–27044.

    CAS  PubMed  Google Scholar 

  • Shaw GM, Harper ME, Hahn BH, Epstein LG, Gajdusek DC, Price RW, Navia BA, Petito CK, O’Hara CJ, Groopman JE (1985). HTLV-III infection in brains of children and adults with AIDS encephalopathy. Science 227: 177–182.

    Article  CAS  PubMed  Google Scholar 

  • Stankoff B, Calvez V, Suarez S, Bossi P, Rosenblum O, Conquy L, Turell E, Dubard T, Coutellier A, Baril L, Bricaire F, Lacomblez L, Lubetzki C (1999). Plasma and cerebrospinal fluid human immunodeficiency virus type-1 (HIV-1) RNA levels in HIV-related cognitive impairment. Eur J Neurol 6: 669–675.

    Article  CAS  PubMed  Google Scholar 

  • Strizki JM, Albright AV, Sheng H, O’Connor M, Perrin L, Gonzalez-Scarano F (1996). Infection of primary human microglia and monocyte-derived macrophages with human immunodeficiency virus type 1 isolates: Evidence of differential tropism. J Virol 70: 7654–7662.

    CAS  PubMed  Google Scholar 

  • van’t Wout AB, Ran LJ, Kuiken CL, Kootstra NA, Pals ST, Schuitemaker H (1998). Analysis of the temporal relationship between human immunodeficiency virus type 1 quasispecies in sequential blood samples and various organs obtained at autopsy. J Virol 72: 488–496.

    Google Scholar 

  • Venturi G, Catucci M, Romano L, Corsi P, Leoncini F, Valensin PE, Zazzi M (2000). Antiretroviral resistance mutations in human immunodeficiency virus type 1 reverse transcriptase and protease from paired cerebrospinal fluid and plasma samples. J Infect Dis 181: 740–745.

    Article  CAS  PubMed  Google Scholar 

  • Weiss KK, Isaacs SJ, Tran NH, Adman ET, Kim B (2000). Molecular architecture of the mutagenic active site of human immunodeficiency virus type 1 reverse transcriptase: Roles of the beta 8-alpha E loop in fidelity, processivity, and substrate interactions. Biochemistry 39: 10684–10694.

    Article  CAS  PubMed  Google Scholar 

  • Wildemann B, Haas J, Ehrhart K, Wagner H, Lynen N, Storch-Hagenlocher B (1993). In vivo comparison of zidovudine resistance mutations in blood and CSF of HIV-1-infected patients. Neurology 43: 2659–2663.

    CAS  PubMed  Google Scholar 

  • Wong JK, Ignacio CC, Torriani F, Havlir D, Fitch NJ, Richman DD (1997). In vivo compartmentalization of human immunodeficiency virus: Evidence from the examination of pol sequences from autopsy tissues. J Virol 71: 2059–2071.

    CAS  PubMed  Google Scholar 

  • Wrobel JA, Chao SF, Conrad MJ, Merker JD, Swanstrom R, Pielak GJ, Hutchison CA (1998). A genetic approach for identifying critical residues in the fingers and palm sub-domains of HIV-1 reverse transcriptase. Proc Natl Acad Sci USA 95: 638–645.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dawn P. Wooley.

Additional information

The Biomedical Sciences PhD Program supported KJH. Public Health Service Grant CA72239 from the National Institutes of Health and a Research Challenge Grant from the state of Ohio supported this research.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, K.J., Alter, G.M. & Wooley, D.P. The reverse transcriptase sequence of human immunodeficiency virus type 1 is under positive evolutionary selection within the central nervous system. Journal of NeuroVirology 8, 281–294 (2002). https://doi.org/10.1080/13550280290100716

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1080/13550280290100716

Keywords

Navigation