Skip to main content

Advertisement

Log in

The relationship of herpes simplex virus latency associated transcript expression to genome copy number: A quantitative study using laser capture microdissection

  • Published:
Journal of NeuroVirology Aims and scope Submit manuscript

Abstract

To investigate the quantitative relationship of latent herpes simplex virus (HSV) genomes to the expression of latency associated transcripts (LATs) we used a combination of laser capture microdissection (LCM), polymerase chain reaction (PCR), and quantitative real-time PCR to determine the number of HSV genomes in individual neurons of the mouse trigeminal ganglion (TG) during viral latency. Both LAT-positive and LAT-negative neurons detected by in situ hybridization (ISH) and lifted by LCM contained HSV genomes detected by PCR for HSV ICP47. The number of genomes/cell determined by real-time PCR with probes for HSV UL44 following LCM demonstrated a Poisson distribution with a predicted mean count of 178 genomes /LAT-positive neuron, and 68 genomes/LAT-negative neuron. The range was similar between the LAT-positive and LAT-negative neurons, and there was a substantial overlap in the distributions. These results suggest that the expression of LATs in an amount that is detectable by ISH does not depend only on the number of HSV genomes in the cell, and by implication suggests that neuron-specific factors play a role in the regulation of LAT expression during latency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bergstrom T, Lycke E (1990). Neuroinvasion by herpes simplex virus. An in vitro model for characterization of neurovirulent strains. J Gen Virol 71(Pt 2): 405–410.

    Article  PubMed  Google Scholar 

  • Cohrs RJ, Randall J, Smith J, Gilden DH, Dabrowski C, van Der Keyl H, Tal-Singer R (2000). Analysis of individual human trigeminal ganglia for latent herpes simplex virus type 1 and varicella-zoster virus nucleic acids using realtime PCR. J Virol 74(24): 11464–11471.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gordon YJ, Johnson B, Romanowski E, Araullo-Cruz T (1988). RNA complementary to herpes simplex virus type I ICP0 gene demonstrated in neurons of human trigeminal ganglia. J Virol 62: 1832–1835.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hill JM, Gebhardt BM, Wen R, Bouterie AM, Thompson HW, O’Callaghan RJ, Haiford WP, Kaufman HE (1996). Quantitation of herpes simplex virus type 1 DNA and latency-associated transcripts in rabbit trigeminal ganglia demonstrates a stable reservoir of viral nucleic acids during latency. J Virol 70(5): 3137–3141.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hill JM, Sedarati F, Javier RT, Wagner EK, Stevens JG (1990). Herpes simplex virus latent phase transcription facilitates in vivo reactivation. Virology 174: 117–125.

    Article  CAS  PubMed  Google Scholar 

  • Katz JP, Bodin ET, Coen DM (1990). Quantitative polymerase chain reaction analysis of herpes simplex virus DNA in ganglia of mice infected with replication-incompetent mutants. J Virol 64: 4288–4295.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Krause PR, Croen KD, Straus SE, Ostrove JM (1988). Detection and preliminary characterization of herpes simplex virus type 1 transcripts in latently infected human trigeminal ganglia. J Virol 62: 4819–4823.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Leib DA, Bogard CL, Kosz-Vnenchak M (1989). A deletion mutant of the latency-associated transcript of herpes simplex virus type 1 reactivates from the latent state with reduced frequency. J Virol 63: 2893–2900.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mehta A, Maggioncalda J, Bagasra O, Thikkavarapu S, Saikumari P, Valyi-Nagy T, Fraser NW, Block TM (1995). In situ DNA PCR and RNA hybridization detection of herpes simplex virus sequences in trigeminal ganglia of latently infected mice. Virology 206: 633–640.

    Article  CAS  PubMed  Google Scholar 

  • Ramakrishnan R, Levine M, Fink DJ (1994). PCR-based analysis of herpes simplex virus type 1 latency in the rat trigeminal ganglion established with a ribonucleotide reductase-deficient mutant. J Virol 68(11): 7083–7091.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ramakrishnan R, Poliani PL, Levine M, Glorioso JC, Fink DJ (1996). Detection of herpes simplex virus type 1 latency-associated transcript expression in trigeminal ganglia by in situ reverse transcriptase PCR. J Virol 70(9): 6519–6523.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rock DL, Nesbern AB, Ghiasi H, Ong J, Lewis TL, Lokensgard JR, Wechsler S (1987). Detection of latency-related viral RNAs in trigeminal ganglia of rabbits latently infected with herpes simplex virus type 1. J Virol 61: 3820–3826.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rodahl E, Stevens JG (1992). Differential accumulation of herpes simplex virus type 1 latency-associated transcripts in sensory and autonomic ganglia. Virology 189: 385–388.

    Article  CAS  PubMed  Google Scholar 

  • Roizman B, Sears A (1996). Herpes simplex viruses and their replication. In: Fields Virology. Fields BN, Knipe DM, Howley PM, Chanock RM, Hirsch MS, Melnick JL, Monath TP, Roizman B (eds). 3rd. ed., vol. 2, Philadelphia: Lippincott-Raven, pp 2231–2295.

    Google Scholar 

  • Sawtell NM (1997). Comprehensive quantification of herpes simplex virus latency at the single-cell level. J Virol 71(7): 5423–5431.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sawtell NM (1998). The probability of in vivo reactivation of herpes simplex virus type 1 increases with the number of latently infected neurons in the ganglia. J Virol 72(8): 6888–6892.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sawtell NM, Poon DK, Tansky CS, Thompson RL (1998). The latent herpes simplex virus type 1 genome copy number in individual neurons is virus strain specific and correlates with reactivation. J Virol 72(7): 5343–5350.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sedarati F, Izumi KM, Wagner EK, Stevens JG (1989). Herpes simplex virus type 1 latency-associated transcription plays no role in establishment or maintenance of a latent infection in murine sensory neurons. J Virol 63: 4455–4458.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Steiner I, Spivack JG, O’Boyle DR, Lavi E, Fraser NW (1988). Latent herpes simplex virus type 1 transcription in human trigeminal ganglia. J Virol 62(9): 3493–3496.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stevens JG, Haarr L, Porter DD, Cook ML, Wagner EK (1988). Prominence of the herpes simplex virus latency-associated transcript in trigeminal ganglia from seropositive humans. J Infect Dis 158(1): 117–123.

    Article  CAS  PubMed  Google Scholar 

  • Stevens JG, Wagner EK, Devi-Rao GB, Cook ML, Feldman LT (1987). RNA complementary to a herpesvirus a gene mRNA is prominent in latently infected neurons. Science 235: 1056–1059.

    Article  CAS  PubMed  Google Scholar 

  • Thompson RL, Sawtell NM (1997). The herpes simplex virus type 1 latency-associated transcript gene regulates the establishment of latency. J Virol 71(7): 5432–5440.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Trousdale MD, Steiner I, Spivack JG, Deshmane SL, Brown SM, MacLean AR, Subak-Sharpe JH, Fraser NW (1991). In vivo and in vitro reactivation impairment of a herpes simplex virus type 1 latency-associated trancript variant in a rabbit eye model. J Virol 65: 6989–6993.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Fink.

Additional information

This work was supported by grants from the NIH (JCG and DJF) and the Department of Veteran’s Affairs (MM and DJF).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, XP., Mata, M., Kelley, M. et al. The relationship of herpes simplex virus latency associated transcript expression to genome copy number: A quantitative study using laser capture microdissection. Journal of NeuroVirology 8, 204–210 (2002). https://doi.org/10.1080/13550280290049642

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1080/13550280290049642

Keywords

Navigation