Skip to main content

Advertisement

Log in

Brain resistance to HSV-1 encephalitis in a mouse model

  • Published:
Journal of NeuroVirology Aims and scope Submit manuscript

Abstract

Brain resistance to intracerebral super infections develops after a peripheral inoculation of neurovirulent viruses. Superinfection resistance combines specificity, toward the virus used for the peripheral inoculum, and short-term duration after the inoculum. In order to study this unusual combination, neurovirulent superinfections were made on albino Swiss mice previously infected with a nasal inoculum. A herpesvirus strain SC16, or a homologue recombinant virus carrying the reporter lac Z gene or a vesicular stomatitis virus (VSV) (a virus taxonomically unrelated to Herpesviridae) were used. The mice underwent a neurological examination and their survival rate was recorded. The brains superinfected with the reporter virus were stained for the β-galactosidase reaction to trace the virus spread and the inflammatory infiltrates were characterized immunocytochemically. The results confirm and extend previous observations about virus specificity and short-term duration of superinfection resistance. They show, moreover, an enhanced brain inflammation with T-cells and macrophages infiltrating the tissue around microvessels, at a time when both neurovirulence and the spread of herpesvirus in the brain are reduced. The results suggest that the immune response to superinfection in the nervous tissue is enhanced by blood-brain barrier mechanisms that promote the timely extravasation of immune cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adler H, Beland JL, Del Pan NC, Kobzik L, Sobel RA, Rimm IJ (1999). In the absence of T cells, NK cells protect from mortality due to HSV-1 encephalitis. J Neuroimmunol 93: 208–213.

    Article  CAS  PubMed  Google Scholar 

  • Anderson SL, Carton JM, Lou J, Xing L, Robin BY (1999). Interferon-induced guanylate binding protein 1 (GBP-1) mediates an antiviral effect against vesicular stomatitis virus and encephalomyocarditi s virus. Virology 256: 8–14.

    Article  CAS  PubMed  Google Scholar 

  • Andjelkovic AV, Pachter JS (2000). Characterization of binding sites for chemokines MCP-1 and MIP-1α on human brain microvessels. J Neurochem 75: 1898–1906.

    Article  CAS  PubMed  Google Scholar 

  • Balan P, Davis-Poynter N, Bell S, Atkinson H, Browne H, Minson T (1994). An analysis of the in vitro and in vivo phenotypes of mutants of HSV-1 lacking glycoproteins Gg, gE, gI or the putative gJ. J Gen Virol 75: 1245–1258.

    Article  CAS  PubMed  Google Scholar 

  • Baringer JR, Pisani P (1994). Herpes simplex virus genomes in human nervous system tissue analysed by pcr. Ann Neurol 36: 823–829.

    Article  CAS  PubMed  Google Scholar 

  • Barna M, Komatsu T, Bi Z, Reiss CS (1996). Sex difference in susceptibility to viral infection of the brain. J Neuroimmunol 67: 31–39.

    PubMed  Google Scholar 

  • Barnett EM, Cassell MD, Perlman S (1993). Two neurotropic viruses, Herpes simplex virus type 1 and mouse hepatitis virus, spread along different neuronal paths from the main olfactory bulb. Neuroscience 57: 1007–1025.

    Article  CAS  PubMed  Google Scholar 

  • Bergstrom T, Conradi H, Hansson E, Liljeroth A, Vahlne A (1994). Resistance of rat central nervous system to brain-stem infection with HSV-1. Acta Neuropathol (Berlin) 87: 398–404.

    Article  CAS  Google Scholar 

  • Bi ZH, Barna M, Komatsu T, Reiss CS (1995). VSV infection in the central nervous system activates both innate and acquired immunity. J Virol 69: 6466–6472.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Boerman RH, Peters AC, Bloem BR, Raap AK, Van der Ploeg M (1992). Spread of herpes simplex virus to cerebrospinal fluid and the meninges in experimental mouse encephalitis. Acta Neuropathol (Berlin) 83: 300–307.

    Article  CAS  Google Scholar 

  • Boggian I, Buzzacaro E, Calistri A, Calvi P, Cavaggioni A, Mucignat-Caretta C, Palù G (2000). Asymptomatic herpes simplex virus infection of the mouse brain. J Neuro Virol 6: 303–313.

    CAS  Google Scholar 

  • Campadelli-Fiume G, Cocchi F, Menotti L, Lopez M (2000). The novel receptors that mediate the entry of herpes simplex viruses and animal alphaherpesviruses into cells. Rev Med Virol 10: 305–319.

    Article  CAS  PubMed  Google Scholar 

  • Cantin EM, Hinton DR, Chen J, Openshaw H (1995). Gamma interferon expression during acute and latent nervous system infection by herpes simplex virus of type 1. J Virol 69: 4898–4905.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Carr JA, Rogerson J, Mulqueen MJ, Roberts NA, Booth RFG (1997). Interleukin-12 exhibits potent antiviral activity in experimental herpesvirus infections. J Virol 71: 7799–7803.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen SH, Garber DA, Schaffer PA, Knipe DM, Coen DM (2000). Persistent elevated expression of cytokine transcripts in ganglia latently infected with herpes simplex virus type 1 in the absence of ganglionic replication or reactivation. Virology 278: 207–218.

    Article  CAS  PubMed  Google Scholar 

  • Chou J, Kern ER, Whitley RJ, Roizman B (1990). Mapping of herpes simplex virus-1 neurovirulence to γ1−34.5, a gene nonessential for growth in culture. Science 250: 1262–1266.

    Article  CAS  PubMed  Google Scholar 

  • Dawson SJ, Palmer RD, Morris PJ, Latchman DS (1998). Functional role of the position 22 in the homeodomain of Brn-3 transcription factors. Neuroreport 9: 2305–2309.

    Article  CAS  PubMed  Google Scholar 

  • Dix RD, McKendall RR, Baringer JR (1983). Comparative neurovirulence of Herpes Simplex Virus type 1 strains after peripheral and intracerebral inoculation in Balb/C mice. Infect Immun 40: 103–112.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dobson CB, Itzhaki RF (1999). Herpes simplex type 1 and Alzheimer’s disease. Neurobiol Aging 20: 457–465.

    Article  CAS  PubMed  Google Scholar 

  • Doerr R, Scidenberg S (1936). Die Konkurrenz von Virusinfektionen in Zentral Nervensystem (Phaenomen von Fl. Magrassi). Zeitsch fur Hygiene 119: 136–165.

    Google Scholar 

  • Doller E, Aucker J, Weissbach A (1979). Persistence of herpes virus type 1 in rat neurotumor cells. J Virol 29: 43–50.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Efstathiou S, Minson AC, Field HJ, Anderson JR, Wildy P (1986). Detection of herpes simplex virus sequences in latently infected mice and humans. J Virol 57: 446–455.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Enquist LW, Husak PJ, Banfield BW, Smith GA (1998). Infection and spread of alphaherpesviruses in the nervous system. Adv Virus Res 51: 237–347.

    CAS  PubMed  Google Scholar 

  • Field HJ, Anderson JR, Efstathiou S (1984). A quantitative study of the effects of several nucleoside analogues on established herpes encephalitis in mice. J Gen Virol 65: 707–719.

    Article  CAS  PubMed  Google Scholar 

  • Flexner S, Lewis PA (1910). Experimental epidemic poliomyelitis in monkeys. J Exp Med 12: 227–255.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fujii S, Akaike T, Maeda H (1999). Role of nitric oxide in pathogenesis of herpes simplex encephalitis in rats. Virology 256: 203–212.

    Article  CAS  PubMed  Google Scholar 

  • Haarr L, Shukla D, Rodahl E, Dal CMC, Spear PG (2001). Transcription from the gene encoding the herpesvirus entry receptor nectin-1 (HveC) in nervous tissue of adult mouse. Virology 287: 301–309.

    Article  CAS  PubMed  Google Scholar 

  • Halford WP, Gebhardt BM, Carr DJJ (1996). Persistent cytokine expression in trigeminal ganglion latently infected with HSV-1. J Immunol 157: 3542–3549.

    CAS  PubMed  Google Scholar 

  • Hatano A (1989). Intranasal infection of ICR mice with herpes simplex virus type 1. J Otorhinolaryngol Soc Jpn 92: 579–587.

    CAS  Google Scholar 

  • Hsu S-M, Raine L, Fanger H (1981). Use of avidin-biotinperoxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures. J Histochem Cytochem 29: 577–580.

    Article  CAS  PubMed  Google Scholar 

  • Hudson SJ, Dix RD, Streilein JW (1991). Induction of encephalitis in SJL mice by intranasal infection with HSV-1: a possible model of herpes simplex encephalitis in humans. J Infect Dis 163: 720–727.

    Article  CAS  PubMed  Google Scholar 

  • Jugenblut CW (1936). On the mechanism of immunity in experimental poliomyelitis. J Infect Dis 58: 150–157.

    Article  Google Scholar 

  • Karin M, Delhase M (2000). The I-κB kinase (IKK) and NF-κB: key elements of proinflammatory signalling. Semin Immunol 12: 85–98.

    Article  CAS  PubMed  Google Scholar 

  • Karpus WJ, Ransohoff RM (1998). Chemokine regulation of experimental autoimmune encephalomyelitis: temporal and spatial expression patterns govern disease pathogenesis. J Immunol 15: 2667–2671.

    Google Scholar 

  • Kastrukoff LF, Lau AS, Puterman ML (1986). Genetics of natural resistance to herpesvirus type 1 latent infection of peripheral nervous system in mice. J Gen Virol 67: 613–621.

    Article  CAS  PubMed  Google Scholar 

  • Kintner RL, Brandt CR (1995). The effect of viral inoculum level and host age on disease incidence, disease severity, and mortality in a murine model of HSV-1 infection. Current Eye Res 14: 145–152.

    Article  CAS  Google Scholar 

  • Komatsu T, Bi Z, Shoshkes Reiss C (1996). Interferon γ induced type INO synthase activity inhibits viral replication in neurons. J Neuroimmunol 68: 101–108.

    Article  CAS  PubMed  Google Scholar 

  • Kriestie TM (1997). The mouse homologue of the human transcription factor C1 (host cell factor)—conservation of forms and function. J Biol Chem 272: 26749–26755.

    Article  Google Scholar 

  • Kristensson K, Lycke E, Sjöstrand J (1971). Spread of herpes simplex virus in peripheral nerves. Acta Neuropathol (Berlin) 53: 44–53.

    Article  Google Scholar 

  • Kristensson K, Nennesmo I, Persson L, Lycke E (1982). Neuron to neuron transmission of herpes simplex virus. J Neurol Sci 54: 149–156.

    Article  CAS  PubMed  Google Scholar 

  • Kuypers HGJM, Ugolini G (1990). Viruses as transneuronal tracers. Trends Neurosci 13: 71–75.

    Article  CAS  PubMed  Google Scholar 

  • Lachmann RH, Efstathiou S (1997). Utilization of the herpes simplex virus type 1 latency associated regulatory region to drive stable reporter gene expression in the nervous system. J Virol 71: 3197–3207.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Leung KN, Nash AA, Sia DY, Wildy P (1984). Clonal analysis of T-cell responses to herpes simplex virus: isolation, characterization and antiviral properties of an antigen-specific helper T-cell clone. Immunology 53: 623–633.

    CAS  PubMed  Google Scholar 

  • Levaditi C, Harvier P, Nicolau S (1922a). Etude expérimentale de l’encéphalite dite “léthargique.” Ann Inst Pasteur 36(1): 3–106.

    Google Scholar 

  • Levaditi C, Harvier P, Nicolau S (1922b). Etude expérimentale de l’encéphalite dite “léthargique.” Ann Inst Pasteur 36(2): 8–148.

    Google Scholar 

  • Levaditi C, Hornus G, Haber P (1935). Virulence de l’ultravirus herpétique administré par voie nasale et digestive. Méchanisme de sa neuroprobasie centripète. Ann Inst Pasteur 54: 390–420.

    Google Scholar 

  • Lewandowsky G (1997). Immunohistochemical examination of intracerebral T-cell recruitment and adhesion molecule induction in herpes simplex virus-infected cells. Brain Behav Immunol 11: 264–272.

    Article  Google Scholar 

  • Liedtke W, Opalka B, Zimmermann CW, Lignitz E (1993). Age distribution of latent herpes simplex virus and Varicella-Zoster virus genome in human nervous tissue. J Neurol Sci 116: 6–11.

    Article  CAS  PubMed  Google Scholar 

  • Lopez C (1975). Genetics of natural resistance to herpesvirus infections in mice. Nature 258: 152–153.

    Article  CAS  PubMed  Google Scholar 

  • Magrassi F (1936a). Studii sull’infezione e sull’immunità da virus erpetico. Sul contenuto in virus del cervello, in rapporto a diversi ceppi di virus, a diverse vie di infezione, a diverse fasi del processo infettivo. Zeitsch Hygiene 117: 501–527.

    Article  Google Scholar 

  • Magrassi F (1936b). Studii sull’infezione e sull’immunità da virus erpetico. Rapporto tra infezione e superinfezione di fronte ai processi immunitari: sulla possibilità di profondamente modificare il decorso e gli esiti del processo infettivo già in atto. Zeitsch Hygiene 117: 573–620.

    Article  Google Scholar 

  • Martin JR, Jenkins FJ, Henken DB (1991). Target of herpes simplex virus type 1 infection in a mouse corneal model. Acta Neuropathol (Berlin) 82: 353–363.

    Article  CAS  Google Scholar 

  • McLean JH, Shipley MT, Bernstein DJ (1989). Golgi-like transneuronal retrograde labelling with central nervous system injections of HSV-1. Brain Res Bull 22: 867–881.

    Article  CAS  PubMed  Google Scholar 

  • McLean JH, Shipley MT, Bernstein DI, Corbett D (1993). Selective lesions of neural pathways following virus inoculation of the olfactory bulb. Exp Neurol 122: 209–222.

    Article  CAS  PubMed  Google Scholar 

  • Morrison LA, Knipe DM (1997). Contributions of antibody and T cell subsets to protection elicited by immunization with a replication-defective mutant of HSV-1. Virology 239: 315–326.

    Article  CAS  PubMed  Google Scholar 

  • Pan Y, Lloyd C, Zhou H, Dolich S, Deeds J, Gonzalo J-A, Vath J, Gosselin M, Ma J, Dussault B, Wolf E, Alperin G, Culpeper J, Gutierrez-Ramos JC, Gearing D (1997). Neurotactin, a membrane anchored chemokine upregulated in brain inflammation. Nature 387: 611–617.

    Article  CAS  PubMed  Google Scholar 

  • Quinn JP, Dalziel RG, Nash AA (2000). Herpes virus latency in sensory ganglia—a comparison with endogenous neuronal gene expression. Progr Neurobiol 60: 167–179.

    Article  CAS  Google Scholar 

  • Ransohoff RM (1998). Chemokines and central nervous system inflammation. Neurotransmissions 13: 3–12.

    Google Scholar 

  • Reiss CS, Plakhov IV, Komatsu T (1998). Viral replication in olfactory receptor neurons and entry into the olfactory bulb and brain. Ann NY Acad Sci 855: 751–761.

    Article  CAS  PubMed  Google Scholar 

  • Sabin A (1934). Studies on the B-virus: I. The immunological identity of a virus isolated from a human case of ascending myelitis associated with visceral necrosis. Br J Exp Pathol 15: 248–268.

    PubMed Central  Google Scholar 

  • Sabin A (1938). Progression of different nasally instilled viruses along different nervous pathways in the same host. Proc Soc Exp Biol Med 38: 270–275.

    Article  Google Scholar 

  • Sanders VJ, Felisan SL, Waddell AE, Conrad AJ, Schmid P, Schwarz BE, Kaufman M, Walsh GO, De Salles AA, Tourtellotte WW (1997). Presence of herpes simplex DNA in surgical tissue from human epileptic seizure foci detected by pcr: preliminary study. Arch Neurol 54: 954–960.

    Article  CAS  PubMed  Google Scholar 

  • Slavin HB, Berry PG (1943). Studies on herpetic infection in mice. II-The pathway of invasion in the central nervous system after intranasal instillation of virus in suckling mice. J Exp Med 78: 315–321.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stroop WG, Douglas C, Schaefer BA (1989). Neurovirulence of two clonally related herpes simplex virus type 1 in a rabbit seizure model. J Neuropathol Exp Neurol 48: 171–183.

    Article  CAS  PubMed  Google Scholar 

  • Su YH, Moxley M, Kejarival R, Mehta A, Fraser NW, Block TM (2000). The herpes simplex virus type 1 genome in quiescently infected NGF differentiated PC12 cells cannot be stimulated by HSV superinfection. J Neuro Virol 6: 341–349.

    CAS  Google Scholar 

  • Thompson KA, Blessing WW, Wessenlingh SL (2000). Herpesvirus replication and dissemination is not increased by corticosteroid treatment in a rat model of focal herpesvirus encephalitis. J Neuro Virol 6: 25–32.

    CAS  Google Scholar 

  • Tomlinson H, Esiri MM (1983). Herpes simplex encephalitis. Immunohistological demonstration of spread of virus via olfactory pathways in mice. J Neurol Sci 60: 473–484.

    Article  CAS  PubMed  Google Scholar 

  • Valyi-Nagy T, Olson SJ, Valyi-Nagy K, Montine TJ, Dermody TS (2000). Herpes simplex virus type 1 latency in the murine nervous system is associated with oxidative damage to neurons. Virology 278: 309–321.

    Article  CAS  PubMed  Google Scholar 

  • Veratti E, Sala G (1923). Sulla infezione erpetica nel coniglio. Boll della Soc Med Chir di Pavia 36: 266–306.

    Google Scholar 

  • Warren TG, Hippenmeier PJ, Meyer DM, Reitz BA, Rowold E Jr, Carron CP (1994). High-level expression of biologically active, solubile forms of ICAM-1 in a novel mammalian-cell expression system. Protein Expr Purif 5: 498–508.

    Article  CAS  PubMed  Google Scholar 

  • Weinstein DL, Walker DJ, Akyiama H, McGreer PL (1990). Herpes simplex virus type 1 infection of the central nervous system induces MHC antigen expression in rat microglia. J Neurosci Res 26: 55–65.

    Article  CAS  PubMed  Google Scholar 

  • Whitley BJ (1996). Herpes simplex virus. In: Fields Virology. Fields BN, Knipe DM, Howley PM (eds). Lippincott-Raven: Philadelphia, pp 2297–2296.

    Google Scholar 

  • Wolf LW, LaRegina MC, Tolbert DL (1996). A behavioral study of the development of hereditary cerebellar ataxia in the shaker rat mutant. Behav Brain Res 75: 69–81.

    Article  Google Scholar 

  • Zhou G, Galvan V, Campanelli-Fiume G, Roizman B (2000). Glycoprotein D or J delivered in trans blocks apoptosis in SK-N-SH cells induced by a HSV-1 mutant lacking intact genes expressing both glycoproteins. J Virol 74: 11782–11791.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Cavaggioni.

Additional information

This work has heen supported by the Consiglio Nazionole delle Ricerche.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Altavilla, G., Calistri, A., Cavaggioni, A. et al. Brain resistance to HSV-1 encephalitis in a mouse model. Journal of NeuroVirology 8, 180–190 (2002). https://doi.org/10.1080/13550280290049633

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1080/13550280290049633

Keywords

Navigation