Skip to main content
Log in

Infection of human NT2 cells and differentiated NT-neurons with herpes simplex virus and replication-incompetent herpes simplex virus vectors

  • Published:
Journal of NeuroVirology Aims and scope Submit manuscript

Abstract

The human embryonal carcinoma cell line NT2 differentiates irreversibly into postmitotic neuron-like cells following treatment with retinoic acid. These differentiated NT-neurons resemble central nervous system (CNS) neurons and are characterized by development of dendrites and axons and the expression of neuron-specific markers. Because of their unique biological characteristics, NT-neurons were investigated for their utility as a system for studying the replication of herpes simplex virus (HSV) in the neuron and for evaluating characteristics of HSV vectors designed for gene delivery to the neuron. Virus replication in differentiated NT-neurons was significantly reduced and delayed relative to replication in undifferentiated NT2 cells. Replication of thymidine-kinase (tk) deficient HSV was further impaired in NT-neurons, reflecting the behavior of tk-negative virus in primary neurons in vitro and ganglia in vivo. Furthermore, replication-incompetent HSV vectors were capable of infecting NT-neurons, expressing a foreign gene, and persisting in a recoverable state for at least 2 weeks following delivery. These results suggest that differentiated NT-neurons can provide a continuous source of human, post-mitotic neurons-like cells for the study of HSV biology and HSV vector development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrews PW (1984). Retinoic acid induces neuronal differentiation of a cloned human embryonal carcinoma cell line in vitro. Dev Biol 103: 285–293.

    Article  CAS  PubMed  Google Scholar 

  • Andrews PW, Damjanov I, Simon D, Banting GS, Carlin C, Dracopoli NC, Fogh J (1984). Pluripotent embryonal carcinoma clones derived from the human teratocarcinoma cell line Tera-2. Differentiation in vivo and in vitro. Lab Invest 50: 147–162.

    CAS  PubMed  Google Scholar 

  • Ausubel FM, Brent R, Kingston RE, Moore DD, Smith JA, Scidman JG, Struhl K (eds) (1987). Current protocols in molecular biology. Greene and Wiley, New York, NY.

    Google Scholar 

  • Chou J, Roizman B (1992). The γ134.5 gene of herpes simplex virus 1 precludes neuroblastoma cells from triggering total shutoff of protein synthesis characteristic of programmed cell death in neuronal cells. Proc Natl Acad Sci USA 89: 3266–3270.

    Article  CAS  PubMed  Google Scholar 

  • Chou J, Poon AP, Johnson J, Roizman B (1994). Differential response of human cells to deletions and stop codons in the γ134.5 gene of herpes simplex virus. J Virol 68: 8304–8311.

    CAS  PubMed  Google Scholar 

  • Coen DM, Kosz-Vnenchak M, Jacobson JG, Leib DA, Bogard CL, Schaffer PA, Tyler KL, Knipe DM (1989). Thymidine kinase-negative herpes simplex virus mutants establish latency in mouse trigeminal ganglia but do not reactivate. Proc Natl Acad Sci USA 86: 4736–4740.

    Article  CAS  PubMed  Google Scholar 

  • Danaher RJ, Jacob RJ, Miller CS (1999). Establishment of a quiescent herpes simplex virus type 1 infection in neurally-differentiated PC12 cells. J Neuro Virol 5: 258–267.

    CAS  Google Scholar 

  • DeLuca NA, Schaffer PA (1987) Activities of herpes simplex type 1 (HSV-1) ICP4 genes specifying nonsense peptides. Nucleic Acids Res 15: 4491–4511.

    Article  CAS  PubMed  Google Scholar 

  • Fath T, Eidenmuller J, Mass T, Brandt R (2000). Herpes simplex virus-mediated expression of the axonal protein tau in human model neurons (NT2-N cells). Microsc Res Tech 48: 85–96.

    Article  CAS  PubMed  Google Scholar 

  • Hagmann M, Georgiev O, Schaffner W, Douville P (1995). Transcription factors interacting with herpes simplex virus α gene promoters in sensory neurons. Nucleic Acdis Res 23: 4978–4985.

    Article  CAS  Google Scholar 

  • Jacobson JG, Ruffner KL, Kosz-Vnenchak M, Hwang CBC, Wobbe KK, Knipe DM, Coen DM (1993). Herpes simplex virus thymidine kinase and specific stages of latency in murine trigeminal ganglia. J Virol 67: 6903–6908.

    CAS  PubMed  Google Scholar 

  • Johnson PA, Wang MJ, Friedmann (1994). Improved cell survival by the reduction of immediate-early gene expression in replication-defective mutants of herpes simplex virus type 1 but not by mutation of the virion host shutoff function. J Virol 66: 6347–6362.

    Google Scholar 

  • Kemp LM, Dent CL, Latchman DS (1990). Octamer motif mediates transcriptional repression of HSV immediate-early genes and octamer-containing cellular promoters in neuronal cells. Neuron 4: 215–222.

    Article  CAS  PubMed  Google Scholar 

  • Kesari S, Randazzo BP, Valyi-Nagy T, Huang QS, Brown SM, MacLean AR, Lee VM-Y, Trojanowski JQ, Fraser NW (1995). Therapy of experimental human brain tumors using a neuroattenuated herpes simplex virus mutant. Lab Invest 73: 636–648.

    CAS  PubMed  Google Scholar 

  • Kosz-Vnenchak M, Jacobson J, Coen DM, Knipe DM (1993). Evidence for a novel regulatory pathway for herpes simplex virus gene expression in trigeminal ganglion neurons. J Virol 67: 5383–5393.

    CAS  PubMed  Google Scholar 

  • Lee VM-Y, Andrews PW (1986). Differentiation of NTERA-2 clonal human embryonal carcinoma cells into neurons involves the induction of all three neurofilament proteins. J Neurosci 6: 514–521.

    CAS  PubMed  Google Scholar 

  • Leib DA, Coen DM, Bogard CL, Hicks KA, Yater DR, Knipe DM, Tyler KL, Schaffer PA (1989). Immediate-early regulatory gene mutants define different stages in the establishment and reactivation of herpes simplex virus latency. J Virol 63: 759–768.

    CAS  PubMed  Google Scholar 

  • McCarthy AM, McMahan L, Schaffer PA (1989). Herpes simplex virus type 1 ICP27 deletion mutants exhibit altered patterns of transcription and are DNA deficient. J Virol 63: 18–27.

    CAS  PubMed  Google Scholar 

  • McFarlane M, Daksis JI, Preston CM (1992). Hexamethylene bisacetamide stimulates herpes simplex virus immediate-early gene expression in the absence of trans-induction by Vmw65. J Gen Virol 73: 285–292.

    Article  CAS  PubMed  Google Scholar 

  • Nichol PF, Chang JY, Johnson Jr EM, Olivo PD (1996). Herpes simplex virus gene expression in neurons: viral DNA synthesis is a critical regulatory event in the branch point between the lytic and latent pathways. J Virol 70: 5476–5486.

    CAS  PubMed  Google Scholar 

  • Pleasure SJ, Page C, Lee VM (1992). Pure, postmitotic, polarized human neurons derived from NTera 2 cells provide a system for expressing exogenous proteins in terminally differentiated neurons. J Neurosci 12: 1802–1815.

    CAS  PubMed  Google Scholar 

  • Roizman B, Sears AE (1996). Herpes simplex viruses and their replication. In: Fields Virology. Fields BN, Knipe DM, Howley PM (eds). 3rd edn, vol 2. Lippincott-Raven, Philadelphia.

    Google Scholar 

  • Rubenstein R, Price RW (1983). Replication of thymidine kinase deficient herpes simplex virus type 1 in neuronal cell culture: infection of the PC12 cell. Arch Virol 78: 49–64.

    Article  CAS  PubMed  Google Scholar 

  • Sears AE, Halliburton IW, Meignier B, Silver S, Roizman B (1985). Herpes simplex virus 1 mutant deleted in the α22 gene: growth and gene expression in permissive and restrictive cells and establishment of latency in mice. J Virol 55: 338–346.

    CAS  PubMed  Google Scholar 

  • Trojanowski JQ, Kleppner SR, Hartley RS, Miyazono M, Fraser NW, Kesari S, Lee VM-Y (1997). Transfectable and transplantable postmitotic human neurons: a potential ‘platform’ for gene therapy of nervous system diseases. Exp Neurol 144: 92–97.

    Article  CAS  PubMed  Google Scholar 

  • Weir JP, Dacquel EJ (1995). Plasmid insertion vectors that facilitate construction of herpes simplex virus gene delivery vectors. Gene 154: 123–128.

    Article  CAS  PubMed  Google Scholar 

  • Weir JP, Narayanan PR (1990). Expression of the herpes simplex virus type 1 glycoprotein C gene requires sequences in the 5′ noncoding region of the gene. J Virol 64: 445–449.

    CAS  PubMed  Google Scholar 

  • Weir JP, Dacquel EJ, Aronovitz J (1996). Herpesvirus vector-mediated gene delivery to human monocytes. Hum Gene Ther 7: 1331–1338.

    Article  CAS  PubMed  Google Scholar 

  • Wilcox CL, Johnson Jr EM (1988). Characterization of nerve growth factor-dependent herpes simplex virus latency in neurons in vitro. J Virol 62: 393–399.

    CAS  PubMed  Google Scholar 

  • Wilcox CL, Crnic LS, Pizer LI (1992). Replication, latent infection, and reactivation in neuronal culture with a herpes simplex virus thymidine kinase-negative mutant. Virology 187: 348–352.

    Article  CAS  PubMed  Google Scholar 

  • Younkin DP, Tang C-M, Hardy M, Reddy UR, Shi Q-Y, Pleasure SJ, Lee VM-Y, Pleasure D (1993). Inducible expression of neuronal glutamate receptor channels in the NT2 human cell line. Proc Natl Acad Sci USA 90: 2174–2178.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weir, J.P. Infection of human NT2 cells and differentiated NT-neurons with herpes simplex virus and replication-incompetent herpes simplex virus vectors. Journal of NeuroVirology 7, 43–51 (2001). https://doi.org/10.1080/135502801300069656

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1080/135502801300069656

Keywords

Navigation