Skip to main content

Advertisement

Log in

Regulation of the hypothalamic-pituitary-adrenal axis in the neonatal rat: The role of maternal behavior

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

There is a growing literature that indicates that exposure to elevated levels of glucocorticoids can result in long term consequences for the developing brain. In the developing rodent there is a period from about day 4–14 when the adrenal response to stress is either minimal or non-existent thus resulting in stable low levels of circulating glucocorticoids. This has been designated as the stress hypo-responsive period (SHRP). Numerous experiments have demonstrated that maternal factors are critical for the regulation of the pup's hypothalamicpituitary-adrenal (HPA) axis and the maintenance of the SHRP. Following 24h of maternal deprivation the neonatal rat shows elevated basal levels of corticosterone and exhibits a robust corticosterone and ACTH response to mild stress. Further c-fos mRNA in the paraventricular nucleus is enhanced following stress in deprived pups. At least three aspects of maternal behavior play a role in the regulation of the HPA axis during development. Tactile stimulation appears capable in inhibiting most of the brain-related changes that occur following maternal deprivation. Feeding is essential for maintaining the adrenal unresponsive and reduces the sensitivity of the adrenal to ACTH. Passive contact suppresses the response to stress. In the adult cordicotropin-releasing hormone (CRH) is the major neuropetide that controls pituitary ACTH secretion. In the maternally deprived pup CRH gene transcription is down regulated and arginine vasopressin (AVP) appears to assume the major regulatory hormone that modulates ACTH. These data all indicate that maternal factors are responsible for actively inhibiting the endocrine responses to stress postnatally. Further, maternal deprivation also results in increased cell death in several brain regions. This during development most of the peripheral and central stress reponsive systems are capable of being activated. However, under conditions of normal dam—pup interactions these responses are mostly supressed by the dam's behavioral interaction with the pups thus preventing the potential toxic effects of increased secretion of glucocorticoids during critical periods of brain development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bakker, J.M., van Bel, F. and Heijnen, C.J. (2001) “Neonatal glucocorticoids and the developing brain: short term treatment with long term consequences” Trends Neurosci. 24, 648–652.

    Article  Google Scholar 

  • Bartanusz, V., Jezova, D., Bertini, L., Tilder, F., Aubry, J.-M. and Kiss, J. (1993) “Stress-induced increase in vasopressin and conticotropin-releasing factor expression in hypophysiotropic paraventricular neurons”, Enducrinology 132, 895–902.

    Article  CAS  Google Scholar 

  • Berry, A.M., Abrahamowicz, M. and Usher, R.H. (1997) “Factors associaled with growth of severely premature infants during initial hospitalization”, Pediatrics 100, 640–646.

    Article  PubMed  CAS  Google Scholar 

  • Bohn, M.C. (1980) “Granule cell genesis in the hippocampus of rats treated neonatally with hydrocortisone”, Neuroscience 5, 2003–2012.

    Article  PubMed  CAS  Google Scholar 

  • Bohn, M.C. (1984) “Glucocorticoid induced teratologies of the nervous system”, In: Yanai, J., ed, Neurobehavioral Teratology (Elsevier, New York), pp 365–387.

    Google Scholar 

  • Cirulli, F., Gottlieb, S.L., Rosenfeld, P. and Levine, S. (1992) “Maternal factors regulate stress responsiverness in the reonatal rat”, Psychobiology 20(2), 143–152.

    Google Scholar 

  • Cirulli, F., Micera, A., Alleva, E. and Aloe, L. (1998) “Eraly maternal separation increases NGF expression in the developing rat hippocampus”, Pharmacol. Biochem. Behav. 59, 853–858.

    Article  PubMed  CAS  Google Scholar 

  • Dallman, M.F., Akana, S.F., Cascio, C.S., Darlington, D.N., Jacobson, L. and Levin, N. (1987) “Regulation of ACTH secretion: variations on a theme of B”, Recent Prog. Horm. Res 43, 113–173.

    PubMed  CAS  Google Scholar 

  • DeGoeji, D., Binnekade, R. and Tilders, E. (1992) “Chronic stress enhances vasopressin but not corticotropin releasing factor secretion during hypoglycemia”, Am. J. Physiol. 263 E394-E399.

    Google Scholar 

  • Dent, G.W., Smith, M.A. and Leveine, S.(1999) “The ontogeny of the neuroendocrine response to endotoxin”, Dev. Brain. Res 117, 21–29.

    Article  CAS  Google Scholar 

  • Dent, G.W., Smith, M.A. and Levine, S. (2000) “Rapid Induction of corticotropin-releasing hormone gene transcription in the paraventricular nucleus of the developing rat”, Endocrinology 141, 1593–1598.

    Article  PubMed  CAS  Google Scholar 

  • Dent, G.W., Okomoto, D.K., Smith, M.A. and Levine, S. (2000) “Stress-induced alterations in corticotropin-releasing hormone and vasopressin gene expression in the paraventricular nucleus during ontogeny”, Neuroendocrinology 71, 333–342.

    Article  PubMed  CAS  Google Scholar 

  • Erskine, M.S., Geller, E. and Yuwiler, A. (1979) “Effects fo neonatal hydrocortisone treatment on pituitary and adrenocortical responses to stress in young rats”, Neuroendocrinology. 29, 191–199.

    Article  PubMed  CAS  Google Scholar 

  • Felszeghy, K., Gasper, E. and Nyakas, C. (1996) “Long-term selective down regulation of brain glucocorticoid receptors after neonatal dexamethasone treatment in rats”, J. Neuroendcrinol. 8, 493–499.

    Article  CAS  Google Scholar 

  • Felszeghy, K., Bagdy, G. and Nyakas, C.(2000) “Blunted pituitaryadrenocortical response in adult rats following neonatal dexamethasone treatment” J. Neuroendocrinol. 12, 1014–1021.

    Article  PubMed  CAS  Google Scholar 

  • Goldman, L., Winget, C., Hollingshead, G.W. and Levine, S. (1973) “Postweaning development of negative feedback in the pituitary-adrenal system of the rat”, Neuroendocrinology 12, 199–211.

    Article  PubMed  CAS  Google Scholar 

  • Grino, M., Burgundor, J.M., Eska, R.L. and Eiden, L.E. (1989) “Onset of glucocorticoid responsiveness of anterior pituitary corticotrophs during development is scheduled by corticotropin-releasing factor”, Endocrinology 124, 2686–2692.

    PubMed  CAS  Google Scholar 

  • Hofer, M.A. (1978) “Hidden regulatory processes in early social relationships”, In: Bateson, P.P.G. and Klopfer, P.H., eds, Persective in Ethology: Social Behavior (Plenum Press, New York), pp 135–166.

    Google Scholar 

  • Hofer, M.A. (1984) “Early stages in the organization of cardiovascular control”, Proc. Soc. Exp. Biol. Med. 175, 147–157.

    PubMed  CAS  Google Scholar 

  • Kent, S., Kernahan, S.D. and Levine, S. (1996) “Effects of excitatory amino acids on the hypothalamic-pituitary-adrenal axis of the neonatal rat”, Dev. Brain Res. 94, 1–13.

    Article  CAS  Google Scholar 

  • Kovaks, K.J. and Sawchenko, P.E. (1996) “Sequences of stress-induced alterations in indices of synaptic and transcriptional activation in parvoceIluar neurosecretory neurons”, J. Neurosci. 16, 262–273.

    Google Scholar 

  • Kuhn, C.M., Pauk, J. and Schanberg, S.M. (1990) “Endocrine responses to mother-infant separation in developing rats”, Dev. Psychobiol. 23, 395–410.

    Article  PubMed  CAS  Google Scholar 

  • Levin, R. and Levine, S. (1975) “Development of circadian periodicity in base and stress levels of corticosterone”, Am. J. Physiol. 229, 1397–1399.

    PubMed  CAS  Google Scholar 

  • Levine, S., Glick, D. and Nakane, P.K. (1967) “Adrenal and plasma corlicosterone and vitamin A in rat adrenal glands during postnatal development”, Endocrinology 80, 1177–1179.

    PubMed  CAS  Google Scholar 

  • Levine, S., Huchton, D.M., Wiener, S.G. and Rosenfeld, P. (1991) “Time course of the effect of maternal deprivation on the hypothalamic-pituitary-adrenal axis in the infant rat”, Dev. Psychobiol. 24(8), 547–558.

    Article  PubMed  CAS  Google Scholar 

  • Ma, X.-M, Levy, A. and Lightman, S.L. (1997) “Emergence of an isolated arginine vasopress (AVP) response to stress after repeated restraint: A study of bothe AVP and corticotropinreleasing hormone messenger ribonucleic acid (RNA) and hetero-nuclear RNA”, Endocrinology 122, 705–711.

    Google Scholar 

  • Martin, C.E., Cake, M.H., Hartmann, P.E. and Cook, I.F. (1977) “Relationship between foetal corticosteroids, maternal progesterone and parturtion in the rat”, Acta Endocrinol. 84, 167–176.

    PubMed  CAS  Google Scholar 

  • Murphy, B.P., Inder, T.E., Huppi, P.S., Warfield, S., Zientra, G.P., Kilkinis, R., Jolesz, F.A. and Volpe, J.J. (2001) “Impaired cerbral cortical gray matter growth after treatment with dexamethasone for neanatal chronic lung disease”, Pediatrics 107, 217–221.

    Article  PubMed  CAS  Google Scholar 

  • Munck, A., Guyre, P.M. and Holbrook, N.J. (1984) “Physiological functions of glucorticoids in stress and their relationship to pharmacological actions”, Endocr. Rev. 5(1), 25–44.

    Article  PubMed  CAS  Google Scholar 

  • OíShea T., Kothadia, J.M., Klinepeter, K.L., Goldstein, D.J., Jackson, R.N., Weaver, R.G. and Dillard, R.G. (1999) “Randomized placebo-controlled trial of a 42 day tapering course of dexamethasone to reduce the duration on ventilator dependency in very low birth weight infants:outcomes of study participants at 1-year adjusted age”, Pediatrics 104, 15–21.

    Article  CAS  Google Scholar 

  • Post, R.M., Leverich, G.S., Xing, G. and Weiss, S.R.B. (2001) “Developmental vulnerabilities to the onset and course of bipolar disorders”, Dev. Psychopathol. 13, 581–598.

    Article  PubMed  CAS  Google Scholar 

  • Rivier, C. and Vale, W. (1983) “Interaction of corticotropinreleasing factor and arginine vasopressine on adrenocorticotropin secretion in vivo”, Endocrinology 113, 939–942.

    PubMed  CAS  Google Scholar 

  • Rivier, C., Rivier, J., Mormede, P. and Vale, W. (1984) “Studies of the nature of the interaction between vasopressin and corticotropin-releasing factor in adrenocorticotropin release in the rat”, Endocrinology 115, 882–886.

    PubMed  CAS  Google Scholar 

  • Rosenfeld, P., Suchecki, D. and Levine, S. (1992) “Multifactorial regulation of the hypothalamic-pituitary-adrenal axis during development”, Neurosci. Biobehav. Rev. 16, 553–568.

    Article  PubMed  CAS  Google Scholar 

  • Rosenfeld, P., Ekstrand, J., Olson, E., Suchecki, D. and Levine, S. (1993) “Maternal Regulation of adrenocortical activity in the infant rat: effects of feeding”, Dev. Psychobiol. 26(5), 261–277.

    Article  PubMed  CAS  Google Scholar 

  • Sawchenko, P.E. (1991) “The final common pathway: issues concerning the organization and central mechanisms controlling corticotropin secretion”, In: Brown, M.E., Koob, G.F., and Rivier, C., eds, Stress, Neurobiology and Neuroendocrinology (Marcel Dekker, New York), pp 57–71.

    Google Scholar 

  • Scaccianoce, S., Muscolo, L. (1991) “Evidence for the specific role of vasopressin in sustaining pituitary-adrenocortical stress response in the rat”, Endrocrinology 128, 3138–3143.

    Article  CAS  Google Scholar 

  • Schanberg, S.M., Evoniuk, G. and Kuhn, C.M. (1984) “Tactile and nutritional aspects of maternal care: Specific regulators of neuroendocrine function and cellular development”, Proc. Soc. Exp. Biol. Med. 175, 135–146.

    PubMed  CAS  Google Scholar 

  • Smith, M.A., Kim, S-Y., Van Oers, H.J.J. and Levine, S. (1997) “Maternal deprivation and stress induced immediate early genes in the infant rat brain”, Endocrinology 138, 4622–4628.

    Article  PubMed  CAS  Google Scholar 

  • Spear, L.P., Specht, S.M., Kirstein, C.L. and Kuhn, C.M. (1989) “Anterior and posterior, but not cheek, intraoral cannulation procedures elevate serum corticosterone levels in neonatal rat pups”, Dev. Psychobiol. 22, 401–411.

    Article  PubMed  CAS  Google Scholar 

  • Stanton, M.E. and Levine, S. (1988) “Maternal modulation of infant glucocorticoid stress responses: Role of age and maternal deprivation”, Psychobiol. 16(3), 223–228.

    Google Scholar 

  • Stanton, M.E. and Levine, S. (1990) “Inhibiton of infant glucorticoid stress response: Specific role of maternal cues”, Dev. Psychobiol. 23, 411–426.

    Article  PubMed  CAS  Google Scholar 

  • Stanton, M.E., Wallstrom, J. and Levine, S. (1987) “Maternal contact inhibits pituitary-adrenal stress response in preweaning rats”, Dev. Psychobiol. 20, 131–145.

    Article  PubMed  CAS  Google Scholar 

  • Suchecki, D., Rosenfeld, P. and Levine, S. (1993) “Maternal regulation of the hypothalamic-pituitary-adrenal axis in the infant rat: The role of feeding and stroking”, Dev. Brain Res. 75, 185–192.

    Article  CAS  Google Scholar 

  • Tanapat, P., Galea, L.A. and Gould, E. (1998) “Stress inhibits the proliferation of granule cell precursors in the developing dentate gyrus”, Int. J. Dev. Neurosci. 16, 235–239.

    Article  PubMed  CAS  Google Scholar 

  • Van Oers, H.J.J., DeKloet, E.R., Whelan, T. and Levine, S. (1998) “Maternal deprivation effect on the infants neural stress markers is reversed by tactile stimulation but not by suppressing corticosterone”, J. Neurosci. 18, 10171–10179.

    PubMed  Google Scholar 

  • Vazquez, D.M. and Akil, H. (1993) “Pituitary-adrenal response to ether vapor in the weanling animal: Characterization of the inhibitory effect on glucocorticoids on adrenocorticoid secretiondiatric”, Pediatr. Res. 34, 646–653.

    PubMed  CAS  Google Scholar 

  • Walker, C.D., Perrin, M., Vale, W. and Rivier, C. (1986) “Ontogeny of the stress response in the rat: role of the pituitary and the hopothalmaus”, Endocrinology 118, 1445–1451.

    PubMed  CAS  Google Scholar 

  • Walker, C.D., Scibner, C.S., Cascio, C.S. and Dallman, M.F. (1991) “The pituitary—adrenocortical system of the neonatal rat is responsive to stress throughout deveolpment in a timedependent and stressor-specivic fashion”, Endocrinology 128, 1385–1395.

    PubMed  CAS  Google Scholar 

  • Yehuda, R. and Meyers, J.S. (1991) “Regional patterns of brain development during the first three weeks following, early adrenalectomy”, Physiol. Behav. 49, 233–237.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, L.-X., Levine, S., Dent, G.W., Zhan, Y., Xing, G., Okimoto, D., Gordon, M.K., Post, R.M., Smith, M.A. (2002) “Maternal deprivation increases cell death in the infant rat brain”, Dev. Brain. Res., 113(1), 1–11.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levine, S. Regulation of the hypothalamic-pituitary-adrenal axis in the neonatal rat: The role of maternal behavior. neurotox res 4, 557–564 (2002). https://doi.org/10.1080/10298420290030569

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1080/10298420290030569

Keywords

Navigation