Advertisement

Journal of Statistical Theory and Practice

, Volume 12, Issue 2, pp 423–435 | Cite as

Multiple testing with close to equally correlated structure

  • Boris G. Zaslavsky
Article

Abstract

In clinical trials with multiple primary endpoints or with multiple observations on the same sampling unit, the maximum of all observations is a convenient statistic that controls the familywise error rate. The quantile of this statistic depends on the correlation among multiple observations. To simplify modeling, the compound symmetry (CS) covariance structure is frequently used. The assumption of exact compound symmetry cannot usually be justified, and further sensitivity studies under more varied correlations are recommended. The need for multiple simulations may impose an increased demand on computer and time resources. To evaluate the sensitivity of simulation results restricted to CS structure, we calculated the linear part of the Taylor expansion of the cumulative distribution function (CDF) for the maximum statistic. Furthermore, we derived the Taylor expansion for quantiles of the maximum statistic. Our simulation studies on the linear approximation of quantiles confirmed good performance of the linearization formula.

Keywords

Compound symmetry covariance matrices Monte Carlo simulation quantile sensitivity analysis Taylor expansion 

AMS Subject Classification

62H15 62E17 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armitage, P., and M. Parmar. 1986. Some approaches to the problem of multiplicity in clinical trials. Proceedings of the Thirteenth International Biometric Conference, Biometric Society, Seattle, WA, 1–15, July 27-August 1.Google Scholar
  2. Berman, S. M. 1964. Limit theorems for the maximum term in stationary sequences. Annals of Mathematical Statistics 35:502–16. doi:10.1214/aoms/1177703551.MathSciNetCrossRefGoogle Scholar
  3. Dubey, S. D. 1985. Adjustment of p-values for multiplicities of intercorrelating symptoms. Proceedings of the Sixth International Society for Clinical Biostatistics, Düsseldorf, Germany, September 15–20.Google Scholar
  4. Efron, B. 1997. The length heuristic for simultaneous hypothesis tests. Biometrika 84:143–57. doi:10.1093/biomet/84.1.143.MathSciNetCrossRefGoogle Scholar
  5. Gupta, S. S. 1963. Probability integrals of multivariate normal and multivariate t 1. Annals of Mathematical Statistics 34:792–828. doi:10.1214/aoms/1177704004.MathSciNetCrossRefGoogle Scholar
  6. Gupta, S. S., K. Nagel, and S. Panchapakesan. 1973. On the order statistics from equally correlated normal random variables. Biometrika 60:403–13. doi:10.1093/biomet/60.2.403.MathSciNetCrossRefGoogle Scholar
  7. Gupta, S. S., S. Panchapakesan, and J. K. Sohn. 1983. On the distribution of the studentized maximum of equally correlated normal random variables. Technical Report 83–31. West Lafayette, IN: Purdue University.MATHGoogle Scholar
  8. James, S. 1991. Approximate multinormal probabilities applied to correlated multiple endpoints in clinical trials. Statistics in Medicine 10:1123–35. doi:10.1002/(ISSN)1097-0258.CrossRefGoogle Scholar
  9. Julious, S. A., and N. E. McIntyre. 2012. Sample sizes for trials involving multiple correlated must-win comparisons. Pharmaceutical Statistics 11:177–85. doi:10.1002/pst.515.CrossRefGoogle Scholar
  10. Jung, S. H., H. Bang, and S. Young. 2005. Sample size calculation for multiple testing in microarray data analysis. Biostatistics 6:157–69. doi:10.1093/biostatistics/kxh026.CrossRefGoogle Scholar
  11. Littell, R. C., J. Pendergast, and R. Natarajan. 2000. Modelling covariance structure in the analysis of repeated measures data. Statistics in Medicine 19:1793–819. doi:10.1002/(ISSN)1097-0258.CrossRefGoogle Scholar
  12. Pocock, S. J., N. L. Geller, and A. A. Tsiatis. 1987. The analysis of multiple endpoints in clinical trials. Biometrics 43:487–98. doi:10.2307/2531989.MathSciNetCrossRefGoogle Scholar
  13. Romano, J. P., and M. Wolf. 2005. Exact and approximate stepdown methods for multiple hypothesis testing. Journal of the American Statistical Association—Theory and Methods 469:94–108. doi:10.1198/016214504000000539.MathSciNetCrossRefGoogle Scholar
  14. Shi, Q., E. S. Pavey, and R. E. Carter. 2012. Bonferroni-based correction factor for multiple, correlated endpoints. Pharmaceutical Statistics 11:300–09. doi:10.1002/pst.v11.4.CrossRefGoogle Scholar
  15. Steck, G. P., and D. B. Owen. 1962. A note on the equicorrelated multivariate normal distribution. Biometrika 49:269–71. doi:10.1093/biomet/49.1-2.269.MathSciNetCrossRefGoogle Scholar
  16. Tong, Y. L. 1990. The multivariate normal distributions. New York, NY: Springer-Verlag.CrossRefGoogle Scholar
  17. Westfall, P. H., and S. S. Young. 1993. Resampling-based multiple testing: Examples and methods for P-value adjustment. New York, NY: John Wiley & Sons.MATHGoogle Scholar
  18. Zaslavsky, B. G., and F. Chen. 2016. Multiplicity adjustment in clinical trials with multiple correlated testing. Model Assisted Statistics and Applications 11:315–24. doi:10.3233/MAS-160375.CrossRefGoogle Scholar

Copyright information

© Grace Scientific Publishing, 20 Middlefield Ct, Greensboro, NC 27455 2018

Authors and Affiliations

  1. 1.Food and Drug AdministrationCBER HFM-219Silver SpringUSA

Personalised recommendations