Advertisement

Journal of Statistical Theory and Practice

, Volume 12, Issue 2, pp 412–422 | Cite as

A class of almost unbiased estimators of population mean using auxiliary variable and auxiliary attribute in systematic sampling

  • Zaheen Khan
Article

Abstract

In this article, we propose a class of almost unbiased estimators for estimating the finite population mean under systematic sampling when information on the auxiliary variable and the auxiliary attribute is available. The proposed class of estimators is always more efficient than the usual mean estimator, ratio estimator, Niak and Gupta estimator, and Sahai and Ray estimator. Two real data sets are used for numerical comparison.

Keywords

Auxiliary variable attributes bias mean squared error (MSE) efficiency 

AMS Subject Classification

62D05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bahl, S., and R. K. Tuteja. 1991. Ratio and product type exponential estimator. Information and Optimization Sciences 12:159–63. doi:10.1080/02522667.1991.10699058.MathSciNetCrossRefGoogle Scholar
  2. Government of Pakistan. 2005–2006. Crops area production (by districts). Islamabad, Pakistan: Ministry of Food, Agriculture and Livestock (Economic Wing).Google Scholar
  3. Government of Pakistan. 2006–2007. Crops area production (by districts). Islamabad, Pakistan: Ministry of Food, Agriculture and Livestock (Economic Wing).Google Scholar
  4. Kadilar, C., and H. Cingi. 2005. A new estimator using two auxiliary variables. Applied Mathematics and Computation 162:901–8. doi:10.1016/j.amc.2003.12.130.MathSciNetCrossRefGoogle Scholar
  5. Koycyigit, E. G., and H. Cingi. 2017. A new class of unbiased linear estimators in systematic sampling. Hacettape Journal of Mathematics and Statistics 46 (2):315–23.MathSciNetzbMATHGoogle Scholar
  6. Naik, V. D., and P. C. Gupta. 1996. A note on estimation of mean with known population proportion of an auxiliary character. Journal of the Indian Society of Agricultural Statistics 48 (2):151–58.Google Scholar
  7. Sahai, A., and S. K. Ray. 1980. An efficient estimator using auxiliary information. Metrika 27:271–75. doi:10.1007/BF01893605.MathSciNetCrossRefGoogle Scholar
  8. Shabbir, J., and S. Gupta. 2007. On estimating the finite population mean with known population proportion of auxiliary variable. Pakistan Journal of Statistic 23 (2):1–9.MathSciNetzbMATHGoogle Scholar
  9. Shabbir, J., and M. Z. Yaab. 2003. Improvement over transformed auxiliary variable in estimating the finite population mean. Biometrical Journal 45:723–29. doi:10.1002/(ISSN)1521-4036.MathSciNetCrossRefGoogle Scholar
  10. Singh., R., and H. P. Singh. 1998. Almost unbiased ratio and product-type estimators in systematic sampling. Questiio 22 (3):403–16.MathSciNetzbMATHGoogle Scholar
  11. Swain, A. K. P. C. 1964. The use of systematic sampling in ratio estimates. Journal of the Indian Statistical Association 2 (213):160–64.MathSciNetGoogle Scholar

Copyright information

© Grace Scientific Publishing, 20 Middlefield Ct, Greensboro, NC 27455 2018

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsFederal Urdu University of Arts, Science and TechnologyIslamabadPakistan

Personalised recommendations