Journal of Statistical Theory and Practice

, Volume 12, Issue 2, pp 370–396 | Cite as

A practical method of robust estimation in case of asymmetry

  • Xiaojian XuEmail author
  • Xiaoyu Chen


A modified Huber loss function is introduced in order to make robust location and regression estimation in the case of asymmetry in a possibly contaminated distribution. This loss function involves a measurement of asymmetry r, which the unequal weights of the observed information can depend upon. Based on this new function, the M-estimators derived can enhance robustness against possible departures from the model assumption and outliers. In order to accommodate asymmetry, a practical method for estimating r is presented and an iterated procedure for both location and regression estimation is developed. Simulation studies are executed on the effects of the proposed modification in the Huber loss function for robust estimation of location parameter for a possibly contaminated distribution and the coefficient parameters in linear regression with errors from a possibly contaminated distribution. We use bias, variance, mean squared error, and relative efficiency as criteria in our simulation study in order to compare the newly developed estimators with the original Huber’s robust estimators. A set of suitable tuning constants used for this modified Huber function has been attained. The results have shown that the proposed M-estimators are efficient. An application to a real data set is also presented in order to illustrate the proposed methods.


Contaminated distribution measurement of asymmetry iterative estimation robust location estimator robust regression estimator 

AMS Subject Classification

Primary 62F10 62F35 Secondary 62J05 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ansell, M. 1973. Robustness of location estimators to asymmetry. Applied Statistics 22:249–54. doi:10.2307/2346926.CrossRefGoogle Scholar
  2. Bianco, A. M., M. Garcia Ben, and V. J. Yohai. 2005. Robust estimation for linear regression with asymmetric errors. The Canadian Journal of Statistics 33:511–28. doi:10.1002/cjs.v33:4.MathSciNetCrossRefGoogle Scholar
  3. Bickel, P. J. 1976. Another look at robustness: A review of reviews and some new developments. Scandinavian Journal of Statistics 3:145–68.MathSciNetzbMATHGoogle Scholar
  4. Box, G. E. P. 1953. Non-normality and test on variances. Biometrika 40:318–35. doi:10.1093/biomet/40.3-4.318.MathSciNetCrossRefGoogle Scholar
  5. Carroll, R. J., and A. H. Welsh. 1988. A note on asymmetry and robustness in linear regression. The American Statistician 42:285–87.MathSciNetGoogle Scholar
  6. Chan, P. S., H. K. T. Ng, N. Balakrishnan, and Q. Zhou. 2008. Point and interval estimation for extreme-value regression model under Type-II censoring. Computational Statistics and Data Analysis 52:4040–58. doi:10.1016/j.csda.2008.01.020.MathSciNetCrossRefGoogle Scholar
  7. Collins, J. R. 1976. Robust estimation of a location parameter in the presence of asymmetry. The Annals of Statistics 4:68–85. doi:10.1214/aos/1176343348.MathSciNetCrossRefGoogle Scholar
  8. Hampel, F. (2001). Robust statistics: A brief introduction and overview. Research Report No. 94, Seminar für Statistik, Eidgenossische Technische Hochschule (ETH), Zürich, Switzerland.Google Scholar
  9. Hampel, F. R., E. M. Ronchetti, P. J. Rousseeuw, and W. A. Stahel. 2011. Robust statistics: The approach based on influence functions. New York, NY: John Wiley & Sons.zbMATHGoogle Scholar
  10. Huber, P. J. 1964. Robust estimation of a location parameter. Annals of Mathematical Statistics 35:73–101. doi:10.1214/aoms/1177703732.MathSciNetCrossRefGoogle Scholar
  11. Huber, P. J. 1972. The 1972 Wald lecture robust statistics: A review. Annals of Mathematical Statistics 43:1041–67. doi:10.1214/aoms/1177692459.MathSciNetCrossRefGoogle Scholar
  12. Huber, P. J. 1981. Robust statistics. New York,NY: John Wiley & Sons.CrossRefGoogle Scholar
  13. Huber, P. J., and E. M. Ronchetti. 2009. Robust statistics, 2nd ed. Hoboken, NJ: John Wiley & Sons.CrossRefGoogle Scholar
  14. Jaeckel, L. A. 1971. Robust estimates of location: Symmetry and asymmetric contamination. Annals of Mathematical Statistics 42:1020–34. doi:10.1214/aoms/1177693330.MathSciNetCrossRefGoogle Scholar
  15. Lemonte, A. J. 2012. A log-Birnbaum–Saunders regression model with asymmetric errors. Journal of Statistical Computation and Simulation 82:1775–87. doi:10.1080/00949655.2011.595715.MathSciNetCrossRefGoogle Scholar
  16. Maronna, R. A., D. R. Martin, and V. J. Yohai. 2006. Robust statistics: Theory and methods. New York, NY: John Wiley & Sons.CrossRefGoogle Scholar
  17. McCool, J. I. 1980. Confidence limits for Weibull regression with censored data. IEEE Transactions on Reliability 29:145–50. doi:10.1109/TR.1980.5220758.CrossRefGoogle Scholar
  18. Reed, J. F., and D. B. Stark. 1996. Hinge estimators of location: Robust to asymmetry. Computer Methods Programs in Biomedcine 49:11–17. doi:10.1016/0169-2607(95)01708-9.CrossRefGoogle Scholar
  19. Tukey, J. W. 1960. A survey of sampling from contaminated distributions. In Contributions to probability and statistics: Essays in honor of Harold Hotelling, ed. I. Olkin, 448–85. Stanford, CA: Stanford University Press.Google Scholar

Copyright information

© Grace Scientific Publishing, 20 Middlefield Ct, Greensboro, NC 27455 2018

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsBrock UniversitySt. CatharinesCanada
  2. 2.Department of Human ResourcesCanadian Imperial Bank of CommerceTorontoCanada

Personalised recommendations