Advertisement

Journal of Statistical Theory and Practice

, Volume 10, Issue 4, pp 780–804 | Cite as

The odd Birnbaum-Saunders regression model with applications to lifetime data

  • Edwin M. M. Ortega
  • Artur J. LemonteEmail author
  • Gauss M. Cordeiro
  • José Nilton da Cruz
Article

Abstract

We introduce a new three-parameter lifetime model called the odd Birnbaum-Saunders distribution. We construct an extended regression model based on the logarithm of the new distribution, which can be applied to censored data and be more effective in analyzing real data. Maximum likelihood estimation of the model parameters of the new regression model is discussed for complete and censored samples. A modified deviance residual is proposed to assess departures from the log-odd Birnbaum-Saunders error assumption and to detect outlying observations. Real data sets are analyzed for illustrative purposes.

Keywords

Birnbaum-Saunders distribution censored data lifetime data regression model 

AMS Subject Classification

60E05 62F10 62J05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atkinson, A. C. 1981. Two graphical display for outlying and influential observations in regression. Biometrika 68:13–20.MathSciNetCrossRefGoogle Scholar
  2. Barlow, W. E., and R. L. Prentice. 1988. Residuals for relative risk regression. Biometrika 75:65–74.MathSciNetCrossRefGoogle Scholar
  3. Barros, M., G. A. Paula, and V. Leiva. 2008. A new class of survival regression models with heavy-tailed errors: Robustness and diagnostics. Lifetime Data Analysis 14:316–32.MathSciNetCrossRefGoogle Scholar
  4. Bhatti, C. R. 2010. The Birnbaum–Saunders autoregressive conditional duration model. Mathematics and Computers in Simulation 80:2062–78.MathSciNetCrossRefGoogle Scholar
  5. Birnbaum, Z. W., and S. C. Saunders. 1969. A new family of life distributions. Journal of Applied Probability 6:319–27.MathSciNetCrossRefGoogle Scholar
  6. Caplehorn, J. R., and J. Bell. 1991. Methadone dosage and retention of patients in maintenance treatment. Medical Journal of Australia 154:195–99.Google Scholar
  7. Chen, G., and N. Balakrishnan. 1995. A general purpose approximate goodness-of-fit test. Journal of Quality Technology 27:154–61.CrossRefGoogle Scholar
  8. Cordeiro, G. M., and A. J. Lemonte. 2011. The β-Birnbaum–Saunders distribution: An improved distribution for fatigue life modeling. Computational Statistics and Data Analysis 55:1445–61.MathSciNetCrossRefGoogle Scholar
  9. Cordeiro, G. M., A. J. Lemonte, and E. M. M. Ortega. 2013. An extended fatigue life distribution. Statistics 47:626–53.MathSciNetCrossRefGoogle Scholar
  10. Cox, D. R., and D. V. Hinkley. 1974. Theoretical statistics. London, UK: Chapman and Hall.CrossRefGoogle Scholar
  11. Desmond, A. F. 1985. Stochastic models of failure in random environments. Canadian Journal of Statistics 13:171–83.MathSciNetCrossRefGoogle Scholar
  12. Desmond, A. F. 1986. On the relationship between two fatigue-life models. IEEE Transactions on Reliability 35:167–69.CrossRefGoogle Scholar
  13. Desmond, A. F., C. L. C. González, R. S. Singh, and X. Lu. 2012. A mixed effects log-linear model based on the Birnbaum–Saunders distribution. Computational Statistics and Data Analysis 56:399–407.MathSciNetCrossRefGoogle Scholar
  14. Desmond, A. F., G. A. Rodríguez-Yam, and X. Lu. 2008. Estimation of parameters for a Birnbaum–Saunders regression model with censored data. Journal of Statistical Computation and Simulation 78:983–97.MathSciNetCrossRefGoogle Scholar
  15. Doornik, J. A. 2009. An object-oriented matrix language—Ox 6. London, UK: Timberlake Consultants Press.Google Scholar
  16. Gijbels, I. 2010. Censored data. Wiley Interdisciplinary Reviews: Computational Statistics 2:178–88.CrossRefGoogle Scholar
  17. Gradshteyn, I. S., and I. M. Ryzhik. 2007. Table of integrals, series, and products. New York, NY: Academic Press.zbMATHGoogle Scholar
  18. Kundu, D., N. Kannan, and N. Balakrishnan. 2008. On the hazard function of Birnbaum–Saunders distribution and associated inference. Computational Statistics and Data Analysis 52:2692–702.MathSciNetCrossRefGoogle Scholar
  19. Kwan, K. C., G. O. Breault, E. R. Umbenhauer, F. G. McMahon, and D. E. Duggan. 1976. Kinetics of Indomethacin absorption, elimination, and enterohepatic circulation in man. Journal of Pharmacokinetics and Biopharmaceutics 4:255–80.CrossRefGoogle Scholar
  20. Leiva, V., M. Barros, G. A. Paula, and A. Sanhueza. 2008. Generalized Birnbaum–Saunders distributions applied to air pollutant concentration. Environmetrics 19:235–49.MathSciNetCrossRefGoogle Scholar
  21. Lemonte, A. J. 2011. Covariance matrix formula for Birnbaum–Saunders regression models. Journal of Statistical Computation and Simulation 81:899–908.MathSciNetCrossRefGoogle Scholar
  22. Lemonte, A. J. 2012. A log-Birnbaum–Saunders regression model with asymmetric errors. Journal of Statistical Computation and Simulation 82:1775–87.MathSciNetCrossRefGoogle Scholar
  23. Lemonte, A. J. 2013. A new extended Birnbaum–Saunders regression model for lifetime modeling. Computational Statistics and Data Analysis 64:34–50.MathSciNetCrossRefGoogle Scholar
  24. Lemonte, A. J., and G. M. Cordeiro. 2009. Birnbaum–Saunders nonlinear regression models. Computational Statistics and Data Analysis 53:4441–52.MathSciNetCrossRefGoogle Scholar
  25. Lemonte, A. J., F. Cribari-Neto, and K. L. P. Vasconcellos. 2007. Improved statistical inference for the two-parameter Birnbaum–Saunders distribution. Computational Statistics and Data Analysis 51:4656–81.MathSciNetCrossRefGoogle Scholar
  26. Lemonte, A. J., and S. L. P. Ferrari. 2011a. Testing hypotheses in the Birnbaum–Saunders distribution under type-II censored samples. Computational Statistics and Data Analysis 55:2388–99.MathSciNetCrossRefGoogle Scholar
  27. Lemonte, A. J., and S. L. P. Ferrari. 2011b. Size and power properties of some tests in the Birnbaum–Saunders regression model. Computational Statistics and Data Analysis 55:1109–17.MathSciNetCrossRefGoogle Scholar
  28. Lemonte, A. J., and S. L. P. Ferrari. 2011c. Small-sample corrections for score tests in Birnbaum–Saunders regressions. Communications in Statistics—Theory and Methods 40:232–43.MathSciNetCrossRefGoogle Scholar
  29. Lemonte, A. J., and S. L. P. Ferrari. 2011d. Signed likelihood ratio tests in the Birnbaum–Saunders regression model. Journal of Statistical Planning and Inference 141:1031–40.MathSciNetCrossRefGoogle Scholar
  30. Lemonte, A. J., S. L. P. Ferrari, and F. Cribari-Neto. 2010. Improved likelihood inference in Birnbaum–Saunders regressions. Computational Statistics and Data Analysis 54:1307–16.MathSciNetCrossRefGoogle Scholar
  31. Lemonte, A. J., A. B. Simas, and F. Cribari-Neto. 2008. Bootstrap-based improved estimators for the two-parameter Birnbaum–Saunders distribution. Journal of Statistical Computation and Simulation 78:37–49.MathSciNetCrossRefGoogle Scholar
  32. Li, A. P., Z. X. Chen, and F. C. Xie. 2012. Diagnostic analysis for heterogeneous log-Birnbaum–Saunders regression models. Statistics and Probability Letters 82:1690–98.MathSciNetCrossRefGoogle Scholar
  33. Meintanis, S. G. 2010. Inference procedures for the Birnbaum–Saunders distribution and its generalizations. Computational Statistics and Data Analysis 54:367–73.MathSciNetCrossRefGoogle Scholar
  34. Nikulin, M. S., and R. Tahir. 2010. Application of Sedy akin’s model and Birnbaum–Saunders family for statistical analysis of redundant systems with one warm stand-by unit. Veroyatnost’i Statistika 17:155–71.Google Scholar
  35. Podlaski, R. 2008. Characterization of diameter distribution data in near-natural forests using the Birnbaum–Saunders distribution. Canadian Journal of Forest Research 38:518–27.CrossRefGoogle Scholar
  36. Pradhan, B., and D. Kundu. 2013. Inference and optimal censoring schemes for progressively censored Birnbaum–Saunders distribution. Journal of Statistical Planning and Inference 143:1098–108.MathSciNetCrossRefGoogle Scholar
  37. Qu, H., and F. C. Xie. 2011. Diagnostics analysis for log-Birnbaum–Saunders regression models with censored data. Statistica Neerlandica 65:1–21.MathSciNetCrossRefGoogle Scholar
  38. Rieck, J. R., and J. R. Nedelman. 1991. A log-linear model for the Birnbaum–Saunders distribution. Technometrics 33:51–60.zbMATHGoogle Scholar
  39. Santana, L., F. Vilca, and V. Leiva. 2011. Influence analysis in skew-Birnbaum–Saunders regression models and applications. Journal of Applied Statistics 38:1633–49.MathSciNetCrossRefGoogle Scholar
  40. Saunders, S. C. 2007. Reliability, life testing, and prediction of service lives. New York, NY: Springer.CrossRefGoogle Scholar
  41. Therneau, T. M., P. M. Grambsch, and T. R. Fleming. 1990. Martingale-based residuals for survival models. Biometrika 77:147–60.MathSciNetCrossRefGoogle Scholar
  42. Vilca, F., A. Sanhueza, V. Leiva, and G. Christakos. 2010. An extended Birnbaum–Saunders model and its application in the study of environmental quality in Santiago, Chile. Stochastic Environmental Research and Risk Assessment 24:771–82.CrossRefGoogle Scholar
  43. Villegas, C., G. A. Paula, and V. Leiva. 2011. Birnbaum–Saunders mixed models for censored reliability data analysis. IEEE Transactions on Reliability 60:748–58.CrossRefGoogle Scholar
  44. Xiao, Q., Z. Liu, N. Balakrishnan, and X. Lu. 2010. Estimation of the Birnbaum–Saunders regression model with current status data. Computational Statistics and Data Analysis 54:326–32.MathSciNetCrossRefGoogle Scholar
  45. Xie, F. C., and B. C. Wei. 2007. Diagnostics analysis for log-Birnbaum–Saunders regression models. Computational Statistics and Data Analysis 51:4692–706.MathSciNetCrossRefGoogle Scholar
  46. Xu, A., and Y. Tang. 2010. Reference analysis for Birnbaum–Saunders distribution. Computational Statistics and Data Analysis 54:185–92.MathSciNetCrossRefGoogle Scholar
  47. Wu, J., and A. C. M. Wong. 2004. Improved interval estimation for the two-parameter Birnbaum–Saunders distribution. Computational Statistics and Data Analysis 47:809–21.MathSciNetCrossRefGoogle Scholar

Copyright information

© Grace Scientific Publishing 2016

Authors and Affiliations

  • Edwin M. M. Ortega
    • 1
  • Artur J. Lemonte
    • 2
    Email author
  • Gauss M. Cordeiro
    • 3
  • José Nilton da Cruz
    • 4
  1. 1.Departamento de Ciências Exatas, ESALQUniversidade de São PauloPiracicaba/SPBrazil
  2. 2.Departamento de EstatísticaUniversidade Federal do Rio Grande do NorteLagoa Nova, Natal/RNBrazil
  3. 3.Departamento de EstatísticaUniversidade Federal de PernambucoRecife/PEBrazil
  4. 4.Departamento de EstatísticaUniversidade de São PauloSão Paulo/SPBrazil

Personalised recommendations