Advertisement

Journal of Statistical Theory and Practice

, Volume 9, Issue 3, pp 608–632 | Cite as

The McDonald Extended Weibull Distribution

  • Elizabeth M. Hashimoto
  • Edwin M. M. Ortega
  • Gauss M. Cordeiro
  • Marcelino A. R. Pascoa
Article
  • 1 Downloads

Abstract

Generalizing lifetime distributions is always precious for statisticians. We propose and study a new six-parameters lifetime distribution called the McDonald extended Weibull model to generalize the Weibull, extended Weibull, exponentiated Weibull, Kumaraswamy Weibull, Kumaraswamy exponential, beta Weibull, beta exponential, and McDonald extended exponential, among several others. We obtain explicit expressions for the moments, incomplete moments, generating and quantile functions, mean deviations, and Bonferroni and Lorenz curves. The method of maximum likelihood and a Bayesian procedure are adopted for estimating the model parameters. The potentiality of the new model is illustrated by means of a real data set.

Keywords

Exponentiated Weibull distribution Generating function Maximum likelihood estimation McDonald distribution Mean deviation Quantile function 

AMS Subject Classification

62N01 62N02 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander, C., G. M. Cordeiro, E. M. M. Ortega, and J. M. Sarabia. 2012. Generalized beta-generated distribution. Computational Statistics and Data Analysis, 56, 1880–1897.MathSciNetCrossRefGoogle Scholar
  2. Barreto-Souza, W., A. H. S. Santos, and G. M. Cordeiro. 2010. The beta generalized exponential distribution. J. Stat. Comput. Simulation, 80, 159–172.MathSciNetCrossRefGoogle Scholar
  3. Balakrishnan, N., V. Leiva, A. Sanhueza, and E. Cabrea. 2009. Mixture inverse Gaussian distributions and its transformations, moments and applications. Statistics, 43, 91–104.MathSciNetCrossRefGoogle Scholar
  4. Cheng, J., C. Tellambura, and N. Beaulieu. 2003. Performance analysis of digital modulations on Weibull fading channels. IEEE Vehicular Technology Conference—Fall, Orlando, FL, 1, 236–240.Google Scholar
  5. Cordeiro, G. M., and M. de Castro. 2011. A new family of generalized distributions. Journal of Statistical Computation and Simulation, 81, 883–898.MathSciNetCrossRefGoogle Scholar
  6. Cordeiro, G. M., S. Nadarajah, and E. M. M. Ortega. 2012. General results for the beta Weibull distribution. J. Stat. Comput. Simulation. doi:10.1080/00949655.2011.649756CrossRefMathSciNetzbMATHGoogle Scholar
  7. Cordeiro, G. M., E. M. M. Ortega, and S. Nadarajah. 2010. The Kumaraswamy Weibull distribution with application to failure data. J. Franklin Inst., 347, 1399–1429.MathSciNetCrossRefGoogle Scholar
  8. Cowles, M. K., and B. P. Carlin. 1996. Markov chain Monte Carlo convergence diagnostics: a comparative review. J. Am. Stat. Assoc., 91, 133–169.MathSciNetzbMATHGoogle Scholar
  9. Eugene, N., C. Lee, and F. Famoye. 2002. Beta-normal distribution and its applications. Commun. Stat. Theory Methods, 31, 497–512.MathSciNetCrossRefGoogle Scholar
  10. Gelman, A., and D. B. Rubin. 1992. Inference from iterative simulation using multiple sequences (with discussion). Stat. Sci., 7, 457–472.CrossRefGoogle Scholar
  11. Gradshteyn, I. S., and I. M. Ryzhik. 2000. Table of integrals, series, and products, 6th ed. San Diego, CA: Academic Press.zbMATHGoogle Scholar
  12. Gupta, R. D., and D. Kundu. 1999. Generalized exponential distributions. Austr. NZ J. Stat., 41, 173–188.MathSciNetCrossRefGoogle Scholar
  13. Gupta, R. D., and D. Kundu. 2001. Exponentiated exponential family: an alternative to gamma and Weibull distributions. Biometrical J., 43, 117–130.MathSciNetCrossRefGoogle Scholar
  14. Gupta, R. C., R. D. Gupta, and P. L. Gupta. 1998. Modeling failure time data by Lehman alternatives. Commun. Stat. Theory Methods, 27, 887–904.MathSciNetCrossRefGoogle Scholar
  15. Hao, Z., and V. P. Singh. 2008. Entropy-based parameter estimation for extended Burr XII distribution. Stochastic Environ. Res. Risk Assess., 23, 1113–1122.CrossRefGoogle Scholar
  16. Jones, M. C. 2004. Family of distributions arising from distribution of order statistics. Test, 13, 1–43.MathSciNetCrossRefGoogle Scholar
  17. Kenney, J. F., and E. S. Keeping. 1962. Mathematics of statistics, 3rd ed. Princenton, NJ: Van Nostrand.zbMATHGoogle Scholar
  18. McDonald, J. B. 1984. Some generalized functions for the size distributions of income. Econometrica, 52, 647–663.CrossRefGoogle Scholar
  19. Moors, J. J. A. 1988. A quantile alternative for kurtosis. J. R. Stat. Society Ser. D, 37, 25–32.Google Scholar
  20. Mudholkar, G. S., and D. K. Srivastava. 1993. Exponentiated Weibull family for analyzing bathtub failure-rate data. IEEE Trans. Reliability, 42, 299–302.CrossRefGoogle Scholar
  21. Mudholkar, G. S., D. K. Srivastava, and M. Freimer. 1995. The exponentiated Weibull family: A reanalysis of the bus-motor-failure data. Technometrics, 37, 436–445.CrossRefGoogle Scholar
  22. Mudholkar, G. S., D. K. Srivastava, and G. D. Kollia. 1996. A generalization of the Weibull distribution with application to the analysis of survival data. J. Am. Stat. Assoc., 91, 1575–1583.MathSciNetCrossRefGoogle Scholar
  23. Nadarajah, S. 2011. The exponentiated exponential distribution: a survey. AStA Adv. Stat. Anal., 95, 219–251.MathSciNetCrossRefGoogle Scholar
  24. Nadarajah, S., and A. K. Gupta. 2007. The exponentiated gamma distribution with application to drought data. Calcutta Stat. Assoc. Bull., 59, 29–54.MathSciNetCrossRefGoogle Scholar
  25. Nadarajah, S., and S. Kotz. 2006. The beta exponential distribution. Reliability Eng. System Safety, 91, 689–697.CrossRefGoogle Scholar
  26. Nadarajah, S., and S. Kotz. 2007. On some recent modifications of Weibull distribution. IEEE Trans. Reliability, 54, 561–562.CrossRefGoogle Scholar
  27. Prudnikov, A. P., Y. A. Brychkov, and O. I. Marichev. 1986. Integrals and series, vol. 1, 2, and 3. Amsterdam, The Netherlands: Gordon and Breach Science.zbMATHGoogle Scholar
  28. Shao, Q., H. Wong, J. Xia, and I. Wai-Cheung. 2004. Models for extremes using the extended three-parameter Burr XII system with application to flood frequency analysis. Hydrol. Sci. J., 49, 685–702.CrossRefGoogle Scholar

Copyright information

© Grace Scientific Publishing 2015

Authors and Affiliations

  • Elizabeth M. Hashimoto
    • 1
  • Edwin M. M. Ortega
    • 1
  • Gauss M. Cordeiro
    • 2
  • Marcelino A. R. Pascoa
    • 3
  1. 1.Departamento de Ciências ExatasUniversidade de São PauloPiracicabaBrazil
  2. 2.Departamento de EstatísticaUniversidade Federal de PernambucoRecifeBrazil
  3. 3.Departamento de EstatísticaUniversidade Federal de Mato GrossoCuiabáBrazil

Personalised recommendations