Advertisement

Journal of Statistical Theory and Practice

, Volume 9, Issue 2, pp 376–394 | Cite as

Optimal Designs for Rational Regression Models

  • Holger Dette
  • Christine Kiss
Article

Abstract

In this article, we consider locally optimal designs problems for rational regression models. In the case where the degrees of polynomials in the numerator and denominator differ by at most 1, we identify an invariance property of the optimal designs if the denominator polynomial is palindromic, which reduces the optimization problem by 50%. The results clarify and extend the particular structure of locally c-, D-, and E-optimal designs for inverse quadratic regression models that have been found by Haines (1992) and have recently been extended by Dette and Kiss (2009). We also investigate the relation between the D-optimal designs for the Michaelis-Menten and EMAX models from a more general point of view. The results are illustrated by several examples.

Keywords

Rational regression models Optimal designs Chebyshev systems Palindromic polynomials 

AMS Subject Classification

62K05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boroujerdi, M. 2002. Pharmacokinetics: Principles and applications. New York, NY: McGraw-Hill.Google Scholar
  2. Chaloner, K., and I. Verdinelli. 1995. Bayesian experimental design: A review. Stat. Sci., 10(3), 273–304.MathSciNetCrossRefGoogle Scholar
  3. Chernoff, H. 1953. Locally optimal designs for estimating parameters. Ann. Math. Stat., 24, 586–602.MathSciNetCrossRefGoogle Scholar
  4. Cobby, J. M., P. F. Chapman, and D. J. Pike. 1986. Design of experiments for estimating inverse quadratic polynomial responses. Biometrics, 42, 659–664.CrossRefGoogle Scholar
  5. Cornish-Browden, A. 1995. Fundamentals of enzyme kinetics (rev. ed.). London, UK: Portland Press.Google Scholar
  6. Dette, H. 1997. Designing experiments with respect to “standardized” optimality criteria. J. R. Stat. Soc., Ser. B, 59, 97–110.MathSciNetCrossRefGoogle Scholar
  7. Dette, H., and S. Biedermann. 2003. Robust and efficient designs for the Michaelis-Menten model. J. Am. Stat. Assoc., 98, 679–686.MathSciNetCrossRefGoogle Scholar
  8. Dette, H., F. Bretz, A. Pepelyshev, and J. C. Pinheiro. 2008. Optimal designs for dose finding studies. J. Am. Stat. Assoc., 103(483), 1225–1237.MathSciNetCrossRefGoogle Scholar
  9. Dette, H., L. Haines, and L. A. Imhof. 1999. Optimal designs for rational models and weighted polynomial regression. Ann. Stat., 27, 1272–1293.MathSciNetCrossRefGoogle Scholar
  10. Dette, H., and C. Kiss. 2009. Optimal experimental designs for inverse quadratic regression models. Stat. Sin., 19(4), 1567–1586.MathSciNetMATHGoogle Scholar
  11. Dette, H., C. Kiss, M. Bevanda, and F. Bretz. 2010. Optimal designs for the EMAX, log-linear and exponential models. Biometrika, 97(2), 513–518.MathSciNetCrossRefGoogle Scholar
  12. Dette, H., and V. B. Melas. 2011. A note on the de la Garza phenomenon for locally optimal designs. Ann. Stat., 39(2), 1266–1281.MathSciNetCrossRefGoogle Scholar
  13. Dette, H., V. B. Melas, and A. Pepelyshev. 2003. Standardized maximin E-optimal designs for the Michaelis-Menten model. Stat. Sin., 13, 1147–1163.MathSciNetMATHGoogle Scholar
  14. Dette, H., V. B. Melas, and A. Pepelyshev. 2004. Optimal designs for a class of nonlinear regression models. Ann. Stat., 32, 2142–2167.MathSciNetCrossRefGoogle Scholar
  15. Dette, H., and K. Schorning. 2013. Complete classes of designs for nonlinear regression models and principal representations of moment spaces. Ann. Stat., 41(3), 1260–1267.MathSciNetCrossRefGoogle Scholar
  16. Dunn, G. 1988. “Optimal” designs for drug, neurotransmitter and hormone receptor assays. Stat. Med., 7, 805–815.CrossRefGoogle Scholar
  17. Electronic handbook of statistical methods. (2012). NIST/SEMATECH. https://doi.org/www.itl.nist.gov/div898/handbook
  18. Haines, L. M. 1992. Optimal design for inverse quadratic polynomials. South Afr. Stat. J., 26, 25–41.MathSciNetMATHGoogle Scholar
  19. He, Z., W. J. Studden, and D. Sun. 1996. Optimal designs for rational models. Ann. Stat., 24, 2128–2142.MathSciNetCrossRefGoogle Scholar
  20. Imhof, L. A., and W. J. Studden. 2001. E-optimal designs for rational models. Ann. Stat., 29(3), 763–783.MathSciNetCrossRefGoogle Scholar
  21. Johansen, S. 1984. Functional relations, random coefficients and nonlinear regression, with application to kinetic data, Lecture Notes in Statistics, eds. P. Bickel, P. Diggle, S. E. Fienberg, U. Gather, I. Olkin, S. Zeger, Vol. 22. Springer.Google Scholar
  22. Karlin, S., and W. J. Studden. 1966. Tchebysheff Systems: With Application inAnalysis and Statistics. Wiley, New York.Google Scholar
  23. Kiefer, J. 1974. General equivalence theory for optimum designs (approximate theory). Ann. Stat., 2, 849–879.MathSciNetCrossRefGoogle Scholar
  24. Lopez-Fidalgo, J., and W. K. Wong. 2002. Design issues for the Michaelis—Menten model. J. Theoret. Biol., 215, 1–11.MathSciNetCrossRefGoogle Scholar
  25. Merle, Y., and F. Mentre. 1995. Bayesian design criteria—computation, comparison, and application to a pharmacokinetic and a pharmacodynamic model. J. Pharmacokinet. Biopharma., 23, 101–125.CrossRefGoogle Scholar
  26. Pukelsheim, F. 1993. Optimal design of experiments. New York, NY: John Wiley & Sons.MATHGoogle Scholar
  27. Rasch, D. 1990. Optimum experimental design in nonlinear regression. Commun. Stat. Theory Methods, 19(12), 4789–4806.MathSciNetCrossRefGoogle Scholar
  28. Ratkowsky, D. A. 1983. Nonlinear regression modeling: A unified practical approach. New York, NY: Marcel Dekker.MATHGoogle Scholar
  29. Ratkowsky, D. A. 1990. Handbook of nonlinear regression models. New York, NY: Marcel Dekker.MATHGoogle Scholar
  30. Silvey, S. D. 1980. Optimal design. London, UK: Chapman & Hall.CrossRefGoogle Scholar
  31. Song, D., and W. K. Wong. 1998. Optimal two-point designs for the Michaelis-Menten model with heteroscedastic errors. Commun. Stat. Theory Methods, 27(6), 1503–1516.CrossRefGoogle Scholar
  32. Wang, J. 2006. Optimal parametric design with applications to pharmacokinetic and pharmacodynamic trials. J. Appl. Stat., 33(8), 837–852.MathSciNetCrossRefGoogle Scholar
  33. Yang, M. 2010. On the de la Garza phenomenon. Ann. Stat., 38(4), 2499–2524.MathSciNetCrossRefGoogle Scholar
  34. Yang, M., and J. Stufken. 2009. Support points of locally optimal designs for nonlinear models with two parameters. Ann. Stat., 37, 518–541.MathSciNetCrossRefGoogle Scholar
  35. Yang, M., and J. Stufken. 2012. Identifying locally optimal designs for nonlinear models: A simple extension with profound consequences. Ann. Stat., 40, 1665–1685.MathSciNetCrossRefGoogle Scholar

Copyright information

© Grace Scientific Publishing 2015

Authors and Affiliations

  1. 1.Fakultät für MathematikRuhr-Universität BochumBochumGermany

Personalised recommendations