Advertisement

Journal of Statistical Theory and Practice

, Volume 9, Issue 1, pp 88–121 | Cite as

An Extension of the Birnbaum-Saunders Distribution as a Model for Fatigue Failure Due to Multiple Cracks

  • Ricardo Leiva
  • Anuradha Roy
  • Rubén Bageta
  • Juan Carlos Pina
Article

Abstract

In this article, we propose an extension of the Birnbaum-Saunders distribution to model the more realistic situations where the fatigue failure time of a material is due to the growth of multiple cracks. Properties of the proposed extended Birnbaum-Saunders (EBS) distribution are discussed; hazard function and the change point of the hazard function of this EBS distribution are derived. Maximum likelihood estimates of the unknown parameters as well as the hazard functions for two special cases of the new EBS distribution are also obtained. Finally, Monte Carlo simulations are carried out to assess the performance of the EBS distribution parameters.

Keywords

Birnbaum-Saunders distribution Hazard function Maximum likelihood estimates Monte Carlo simulations Multiple cracks 

AMS Subject Classification

Primary 62E15 Secondary 62H12 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmed, S. E., Castro-Kuriss, C., Flores, E., Leiva, V., and Sanhueza, A. 2010. A truncated version of the Birnbaum-Saunders distribution with an application in financial risk. Pak. J. Stat., 26(1), 293–311.MathSciNetGoogle Scholar
  2. Ahmed, S. E., Budsaba, K., Lisawadi, S., and Volodin, A. I. 2008. Parametric estimation for the Birnbaum-Saunders lifetime distribution based on a new parameterization. Thailand Statistician, 6, 213–240.MathSciNetMATHGoogle Scholar
  3. Apostol, T. M. 1969. Calculus, vol II, 2nd ed. New York, NY: John Wiley & Sons.MATHGoogle Scholar
  4. Arnold, B. C., and Beaver, R. J. 2002. Skewed multivariate models related to hidden truncation and/or selective reporting. Test, 11(1), 7–54.MathSciNetCrossRefGoogle Scholar
  5. Azzalini, A. 1985. A class of distributions which include the normal. Scand. J. Stat., 12, 171–178.MathSciNetMATHGoogle Scholar
  6. Bhattacharyya, G. K., and Fries, A. 1980. Fatigue failure models—Birnbaum-Saunders vs. inverse Gaussian. IEEE Trans. Reliability, R-31, 439–440.CrossRefGoogle Scholar
  7. Birnbaum, Z. W., and Saunders, S. C. 1969a. A new family of life distribution. J. Appl. Probability, 6, 319–327.MathSciNetCrossRefGoogle Scholar
  8. Birnbaum, Z. W., and Saunders, S. C. 1969b. Estimation for a family of life distribuitions with applications to fatigue. J. Appl. Probability, 6, 328–347.MathSciNetCrossRefGoogle Scholar
  9. Caro-Lopera, F. J., Leiva, V., and Balakrishnan, N. 2012. Connection between the Hadamard and matrix products with an application to matrix-variate Birnbaum-Saunders distributions. J. Multivariate Anal., 104, 126–139.MathSciNetCrossRefGoogle Scholar
  10. Cordeiro, G. M., and Lemonte, A. J. 2011. The Birnbaum-Saunders distribution: An improved distribution for fatigue life modeling. Comput. Stat. Data Anal., 55, 1445–1461.MathSciNetCrossRefGoogle Scholar
  11. Desmond, A. F. 1985. Stochastic models of failure in random environments. Can. J. Stat., 13(2), 171–183.MathSciNetCrossRefGoogle Scholar
  12. Desmond, A. F. 1986. On the relationship between two fatigue-life models. IEEE Trans. Reliability, 35(2), 167–169.CrossRefGoogle Scholar
  13. Diaz-García, J. A., and Domínguez-Molina, J. R. 2007. A new family of life distributions for dependent data: Estimation, Comput. Stat. Data Anal., 51, 5927–5939.MathSciNetCrossRefGoogle Scholar
  14. Díaz-García, J. A., and Leiva, V. 2005. A new family of life distributions based on elliptically contoured distributions. J. Stat. Plan. Inference, 128(2), 445–457.MathSciNetCrossRefGoogle Scholar
  15. Fletcher, H. 1911. A verification of the theory of Brownian movements and a direct determination of the value of NE for gaseous ionization. Phys. Rev., 33, 81–110.Google Scholar
  16. Ghodrat, S. 2013. Thermo-mechanical fatigue of compacted graphite iron in diesel engine components. PhD thesis, Delft University of Technology, Delft, The Netherlands.Google Scholar
  17. Glaser, R. A. 1980. Bathtub and related failure rate characterization. J. Am. Stat. Assoc., 75, 667–672.MathSciNetCrossRefGoogle Scholar
  18. Gómez, H. W., Olivares-Pacheco, J. F., and Bolfarine, H. 2009. An extension of the generalized Birnbaum-Saunders distribution. Stat. Prob. Lett., 79, 331–338.MathSciNetCrossRefGoogle Scholar
  19. Gundlach, R. B. 1983. The effect of alloying elements on the elevated temperature properties of gray irons. Trans. Am. Foundrymen’s Soc., 91, 389–422.Google Scholar
  20. Gupta, R. C., and Gupta, R. D. 2004. Generalized skew normal model. Test, 13(2), 501–524.MathSciNetCrossRefGoogle Scholar
  21. Konstantinowsky, D. 1914. Elektrische ladungen and Brown’sche bewegung sehr kleiner metallteilchen in Gasen. Sitzungsberitcder Kaiserlichen Akademie der Wissenschften, 123, 1697–1752.Google Scholar
  22. Kundu, D., Kannan, N., and Balakrishnan, N. 2008. On the hazard function of Birnbaum-Saunders distribution and associated inference. Comput. Stat. Data Anal., 52, 2692–2702.MathSciNetCrossRefGoogle Scholar
  23. Kundu, D., Balakrishnan, N., and Jamalizadeh, A. 2010. Bivariate Birnbaum-Saunders distribution and associated inference. J. Multivariate Anal., 101, 113–125.MathSciNetCrossRefGoogle Scholar
  24. Kundu, D., Balakrishnan, N., and Jamalizadeh, A. 2013. Generalized multivariate Birnbaum-Saunders distribution and related inferential issues. J. Multivariate Anal., 116, 230–244.MathSciNetCrossRefGoogle Scholar
  25. Leiva, V., Sanhueza, A., and Angulo, J. M. 2009. A length-biased version of the Birnbaum-Saunders distribution with application in water quality. Stochastic Environ. Res. Risk Assess., 23, 299–307.MathSciNetCrossRefGoogle Scholar
  26. Lemonte, A. J., Cribari-Neto, F., and Vasconcellos, K. L. P. 2007. Improved statistical inference for the two-parameter Birnbaum-Saunders distribution. Comput. Stat. Data Anal., 51, 4656–4681.MathSciNetCrossRefGoogle Scholar
  27. Liu, J. H., Hao, X. Y., Li, G. L., and Liu, G. S. 2002. Microvoid evaluation of ferrite ductile iron under strain. Mater. Lett., 56, 748–755.CrossRefGoogle Scholar
  28. Mann, N. R., Schafer, R. E., and Singpurwalla, N. D. 1974. Methods for statistical analysis of reliability and life data. New York, NY: John Wiley & Sons.MATHGoogle Scholar
  29. Mittelhammer, R. C., Judge, G. G., and Miller, D. J. 2000. Econometric foundations.New York, NY: Cambridge University Press.MATHGoogle Scholar
  30. Ng, H. K. T., Kundu, D., and Balakrishnan, N. 2003. Modified moment estimation for the two-parameter Birnbaum-Saunders distribution. Comput. Stat. Data Anal., 43, 283–298.MathSciNetCrossRefGoogle Scholar
  31. Owen, W. J. 2006. A new three parameter extension to the Birnbaum-Saunders distribution. IEEE Trans. Reliability, 55, 475–479.CrossRefGoogle Scholar
  32. Rundman, K. B. 2001. Cast irons. In Encyclpedia of materials: Science and technology, 1003–1010. New York, NY: Elsevier.CrossRefGoogle Scholar
  33. Santos-Neto, M., Cysneiros, F. J. A., Leiva, A., and Ahmed, S. E. 2012. On new parameterizations of the Birnbaum-Saunders distribution. Pak. J. Stat., 28(1), 1–26.MathSciNetGoogle Scholar
  34. Self, S. G., and Liang, K. 1987. Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under nonstandard conditions. J. Am. Stat. Assoc., 82(398), 605–610.MathSciNetCrossRefGoogle Scholar
  35. Vilca, F., and Leiva, V. 2006. A new fatigue life model based on the family of skew-elliptic distributions. Commun. Stat. Theory Methods, 35, 229–244.CrossRefGoogle Scholar

Copyright information

© Grace Scientific Publishing 2015

Authors and Affiliations

  • Ricardo Leiva
    • 1
  • Anuradha Roy
    • 2
  • Rubén Bageta
    • 3
  • Juan Carlos Pina
    • 4
    • 5
  1. 1.F.C.E.Universidad Nacional de CuyoMendozaArgentina
  2. 2.Department of Management Science and StatisticsThe University of Texas at San AntonioSan AntonioUSA
  3. 3.F.C.A. and I.C.B.Universidad Nacional de CuyoMendozaArgentina
  4. 4.Materials Innovation Institute M2iDelftThe Netherlands
  5. 5.Eindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations