Journal of Statistical Theory and Practice

, Volume 9, Issue 1, pp 134–145 | Cite as

Beta Regression Models: Joint Mean and Variance Modeling

  • Edilberto Cepeda-CuervoEmail author


In this article, joint mean and variance beta regression models are proposed. The proposed models are fitted by applying the Bayesian method and assuming normal prior distribution for the regression parameters. An analysis of synthetic and real data is included, assuming the proposed model, together with a comparison of the result obtained assuming joint modeling of the mean and precision parameters.


Beta regression Bayesian method Mean and variance modeling 

AMS Subject Classification



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Atkinson, A. B. 1970. On the measurement of inequality. J. Econ. Theory, 2, 244–263.MathSciNetCrossRefGoogle Scholar
  2. Cepeda, C. E. 2001. Variability modeling in generalized linear models. Unpublished PhD thesis, Instituto de Matemáticas Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.Google Scholar
  3. Cepeda C. E., and D. Gamerman. 2001. Bayesian modeling of variance heterogeneity in normal regression models. Braz. J. Probability Stat., 14, 207–221.zbMATHGoogle Scholar
  4. Cepeda-Cuervo, E. 2005. Factores asociados al logro cognitivo en matemáticas. Rev. educ., 336, 503–514.Google Scholar
  5. Cepeda C. E., and D. Gamerman. 2005. Bayesian methodology for modeling parameters in the two parameter exponential family. Estadistica, 57, 93–105.MathSciNetGoogle Scholar
  6. Cepeda-Cuervo, E., and J. A. Achcar. 2010. Heteroscedastic nonlinear regression models. Commun. Stat. Simulation Comput., 39(2), 405–419.MathSciNetCrossRefGoogle Scholar
  7. Cepeda-Cuervo, E., and V. Nuñez-Anton. 2011. Generalized econometric spatial models. Commun. Stat. Simulation Comput., 39(2), 405–419.CrossRefGoogle Scholar
  8. Ferrari, S., and F. Cribari-Neto. 2004. Beta regression for modeling rates and proportions. J. Appl. Stat., 31, 799–815.MathSciNetCrossRefGoogle Scholar
  9. Jorgensen, B. 1997. Proper dispersion models (with discussion). Braz. J. Probability Stat., 11, 89–140.zbMATHGoogle Scholar
  10. Simas A. B., W. Barreto-Souza, and A. V. Rocha. 2010. Improved estimators for a general class of beta regression models. Comput. Stat. Data Anal., 54(2), 348–366.MathSciNetCrossRefGoogle Scholar
  11. Smithson, M., and J. Verkuilen. 2006. A better lemon squeezer? Maximum-likelihood regression with beta-distributed dependent variables. Psychol. Methods, 11(1), 54–71.CrossRefGoogle Scholar
  12. Spiegelhalter, D. J., N. G. Best, B. P. Carlin, and A. van der Linde. 2002. Bayesian measures of model complexity and fit. J. R. Stat. Society Ser. B, 64(4), 583–639.MathSciNetCrossRefGoogle Scholar

Copyright information

© Grace Scientific Publishing 2015

Authors and Affiliations

  1. 1.Departamento de EstadísticaUniversidad Nacional de ColombiaBogotáColombia

Personalised recommendations