Advertisement

Journal of Statistical Theory and Practice

, Volume 9, Issue 2, pp 288–304 | Cite as

Nonparametric Predictive Inference With Combined Data Under Different Right-Censoring Schemes

  • Tahani Coolen-Maturi
  • Frank P. A. Coolen
Article

Abstract

This article presents nonparametric predictive inference (NPI) for meta-analysis in which multiple independent samples of lifetime data are combined, where different censoring schemes may apply to the different samples. NPI is a frequentist statistical approach based on few assumptions and with uncertainty quantified via lower and upper probabilities. NPI has the flexibility to deal with a mixture of different types of censoring, mainly because the inferences do not depend on counterfactuals, which affect several inferences for more established frequentist approaches. We show that the combined sample, consisting of differently censored independent samples, can be represented as one sample of progressively censored data. This allows explicit formulas for the NPI lower and upper survival functions to be presented that are generally applicable. The approach is illustrated through an example using a small data set from the literature, for which several scenarios are presented.

Keywords

Combined data Lower and upper probability Meta-analysis Nonparametric predictive inference Right-censoring Progressive censoring Lifetime data 

AMS Subject Classification

62G99 62N99 62N05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Augustin, T., and F. P. A. Coolen. 2004. Nonparametric predictive inference and interval probability. J. Stat. Plan. Inference, 124, 251–272.MathSciNetCrossRefGoogle Scholar
  2. Balakrishnan, N. 2007. Progressive censoring methodology: an appraisal (with discussions). TEST, 16, 211–296.MathSciNetCrossRefGoogle Scholar
  3. Balakrishnan, N., and R. Aggarwala. 2000. Progressive censoring: Theory, methods, and applications. Boston, MA: Birkha.CrossRefGoogle Scholar
  4. Balakrishnan, N., E. Beutner, and E. Cramer. 2010. Exact two-sample nonparametric confidence, prediction, and tolerance intervals based on ordinary and progressively type-II right censored data. TEST, 19, 68–91.MathSciNetCrossRefGoogle Scholar
  5. Bordes, L. 2004. Non-parametric estimation under progressive censoring. J. Stat. Plan. Inference, 119, 171–189.MathSciNetCrossRefGoogle Scholar
  6. Borenstein, M., L. V. Hedges, J. P. T. Higgins, and H. Rothstein. 2009. Introduction to meta-analysis. Chichester, UK: Wiley.CrossRefGoogle Scholar
  7. Burke, M. 2011. Nonparametric estimation of a survival function under progressive type-I multistage censoring. J. Stat. Plan. Inference, 141, 910–923.MathSciNetCrossRefGoogle Scholar
  8. Coolen, F. P. A. 2006. On nonparametric predictive inference and objective Bayesianism. J. Logic Language Information, 15, 21–47.MathSciNetCrossRefGoogle Scholar
  9. Coolen, F. P. A. 2011. Nonparametric predictive inference. In International encyclopedia of statistical science, ed. M. Lovric, 968–970. Berlin, Germany: Springer.CrossRefGoogle Scholar
  10. Coolen, F. P. A., P. Coolen-Schrijner, and K. J. Yan. 2002. Nonparametric predictive inference in reliability. Reliability Eng. System Safety, 78, 185–193.CrossRefGoogle Scholar
  11. Coolen, F. P. A., and K. J. Yan. 2004. Nonparametric predictive inference with right-censored data. J. Stat. Plan. Inference, 126, 25–54.MathSciNetCrossRefGoogle Scholar
  12. Coolen-Maturi, T. 2014. Nonparametric predictive pairwise comparison with competing risks. Reliability Eng. System Safety, in press.CrossRefGoogle Scholar
  13. Coolen-Maturi, T., P. Coolen-Schrijner, and F. P. A. Coolen. 2011. Nonparametric predictive selection with early experiment termination. J. Stat. Plan. Inference, 141, 1403–1421.MathSciNetCrossRefGoogle Scholar
  14. Coolen-Maturi, T., P. Coolen-Schrijner, and F. P. A. Coolen. 2012c. Nonparametric predictive multiple comparisons of lifetime data. Commun. Stat. Theory Methods, 41, 4164–4181.MathSciNetCrossRefGoogle Scholar
  15. Coolen-Schrijner, P., T. A. Maturi, and F. P. A. Coolen. 2009. Nonparametric predictive precedence testing for two groups. J. Stat. Theory Pract., 3, 273–287.MathSciNetCrossRefGoogle Scholar
  16. De Finetti, B. 1974. Theory of probability. London, UK: Wiley.zbMATHGoogle Scholar
  17. Hill, B. M. 1968. Posterior distribution of percentiles: Bayes’ theorem for sampling from a population. J. Am. Stat. Assoc., 63, 677–691.MathSciNetzbMATHGoogle Scholar
  18. Hill, B. M. 1988. De Finetti’s theorem, induction, and An, or Bayesian nonparametric predictive inference (with discussion). In Bayesian statistics 3, ed. J. M. Bernando, M. H. DeGroot, D. V. Lindley, and A. Smith, 211–241. New York, NY: Oxford University Press.Google Scholar
  19. Hill, B. M. 1993. Parametric models for an: Splitting processes and mixtures. J. R. Stat. Soc. Ser. B (Methodological), 55, 423–433.MathSciNetzbMATHGoogle Scholar
  20. Kaplan, E. L., and P. Meier. 1958. Nonparametric estimation from incomplete observations. J. Am. Stat. Assoc., 53, 457–481.MathSciNetCrossRefGoogle Scholar
  21. Maturi, T. A. 2010. Nonparametric predictive inference for multiple comparisons. PhD thesis, Durham University, Durham, UK. https://doi.org/www.npi-statistics.com Google Scholar
  22. Maturi, T. A., P. Coolen-Schrijner, and F. P. A. Coolen. 2010a. Nonparametric predictive comparison of lifetime data under progressive censoring. J. Stat. Plan. Inference, 140, 515–525.MathSciNetCrossRefGoogle Scholar
  23. Maturi, T. A., P. Coolen-Schrijner, and F. P. A. Coolen. 2010b. Nonparametric predictive inference for competing risks. J. Risk Reliability, 224, 11–26.zbMATHGoogle Scholar
  24. Nelson, W. 1982. Applied life data analysis. New York, NY: Wiley.CrossRefGoogle Scholar
  25. Shafer, G. 1976. A mathematical theory of evidence. Princeton, NJ: Princeton University Press.zbMATHGoogle Scholar
  26. Volterman, W., and N. Balakrishnan. 2010. Exact nonparametric confidence, prediction and tolerance intervals based on multi-sample type-II right censored data. J. Stat. Plan. Inference, 140, 3306–3316.MathSciNetCrossRefGoogle Scholar
  27. Volterman, W., N. Balakrishnan, and E. Cramer. 2012. Exact nonparametric meta-analysis for multiple independent doubly type-II censored samples. Comput. Stat. Data Anal., 56, 1243–1255.MathSciNetCrossRefGoogle Scholar
  28. Volterman, W., N. Balakrishnan, and E. Cramer. 2014. Exact meta-analysis of several independent progressively type-II censored data. Appl. Math. Model., 38, 949–960.MathSciNetCrossRefGoogle Scholar
  29. Walley, P. 1991. Statistical reasoning with imprecise probabilities. London, UK: Chapman & Hall.CrossRefGoogle Scholar
  30. Weichselberger, K. 2001. Elementare Grundbegriffe einer allgemeineren Wahrscheinlichkeitsrechnung I. Intervallwahrscheinlichkeit als umfassendes Konzept. Heidelberg, Germany: Physika.CrossRefGoogle Scholar
  31. Yan, K. J. 2002. Nonparametric predictive inference with right-censored data. PhD thesis, Durham University, Durham, UK. https://doi.org/www.npi-statistics.com Google Scholar

Copyright information

© Grace Scientific Publishing 2015

Authors and Affiliations

  1. 1.Durham University Business SchoolDurham UniversityDurhamUK
  2. 2.Department of Mathematical SciencesDurham UniversityDurhamUK

Personalised recommendations