Advertisement

Optimal Biased Weighing Designs and Two-Level Main-Effect Plans

  • Ching-Shui ChengEmail author
Article

Abstract

Optimal biased chemical and spring balance weighing designs are considered. Optimal designs in either setting can be obtained from those in the other via a simple transformation. Optimal approximate designs for unbiased chemical balance, biased chemical balance, and biased spring balance are closely related and can easily be obtained from one another. These designs correspond to universally optimal exact designs for the case N ≡ 0 (mod 4), where N is the run size. While Cheng’s (1980) result on the type 1 optimality of certain unbiased chemical balance weighing designs for the case N ≡ 1 (mod 4) can be extended to the biased setting, such an extension does not hold for N ≡ 2 (mod 4). We obtain exact Φp-optimal designs in the latter case for all p ≥ 0. The results obtained in this article can also be applied to optimal main-effect plans when one is interested in the main effects but not the general mean. Under the usual orthogonal parameterization, the model matrices of main-effect plans have 1, −1 entries, and the designs can also be considered as biased chemical balance weighing designs. On the other hand, under a nonorthogonal baseline parameterization, the model matrices have 0, 1 entries, and the designs are equivalent to biased spring balance weighing designs.

Keywords

Baseline parameterization Chemical balance weighing design Φp-optimality Spring balance weighing design Type 1 optimality 

AMS Subject Classification

62K05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Banerjee, T., and R. Mukerjee. 2008. Optimal factorial designs for cDNA microarray experiments. Ann. Appl. Stat., 2, 366–385.MathSciNetCrossRefGoogle Scholar
  2. Ceranka, B., and K. Katulska. 1992. Relations between optimum biased spring balance weighing designs and optimum chemical balance weighing designs. Proc. 10th Conf. Probab. Math. Statist., Bratislava, Czechoslovakia, 95–101.Google Scholar
  3. Ceranka, B., and M. Graczyk. 2009. On some method of construction optimum biased spring balance weighing design. Colloq. Biometricum, 39, 53–62.zbMATHGoogle Scholar
  4. Chadjipantelis, T., S. Kounias, and C. Moyssiadis. 1987. The maximum determinant of 21 × 21 (+1, −1)-matrices and D-optimal designs. J. Stat. Plan. Inference, 16, 167–178.MathSciNetCrossRefGoogle Scholar
  5. Cheng, C. S. 1978. Optimality of certain asymmetrical experimental designs. Ann. Stat., 6, 1239–1261.MathSciNetCrossRefGoogle Scholar
  6. Cheng, C. S. 1980. Optimality of some weighing and 2n fractional factorial designs. Ann. Stat., 8, 436–446.CrossRefGoogle Scholar
  7. Cheng, C. S. 1987a. An optimization problem with applications to optimal design theory. Ann. Stat. 15, 712–723.MathSciNetCrossRefGoogle Scholar
  8. Cheng, C. S. 1987b. An application of the Kiefer-Wolfowitz equivalence theorem to a problem in Hadamard transform optics. Ann. Stat., 15, 1593–1603.MathSciNetCrossRefGoogle Scholar
  9. Cheng, C. S., J. C. Masaro, and C. S. Wong. 1985. Optimal weighing designs. SIAM J. Alg. Disc. Methods, 6, 259–267.MathSciNetCrossRefGoogle Scholar
  10. Ehlich, H. 1964. Determinantenabschatzungen furürbinare Matrizen. Math. Zeitschr., 83, 123–132.MathSciNetCrossRefGoogle Scholar
  11. Fan, K. 1954. Inequalities for eigenvalues of Hermitian matrices. Nat. Bur. Standards Appl. Math. Ser., 39, 131–139.MathSciNetGoogle Scholar
  12. Galil, Z., and J. Kiefer. 1980. D-optimum weighing designs. Ann. Stat., 8, 1293–1306.MathSciNetCrossRefGoogle Scholar
  13. Galil, Z., and J. Kiefer. 1982. Construction methods for D-optimum weighing designs when n ≡ 3 (mod 4). Ann. Stat., 10, 502–510.MathSciNetCrossRefGoogle Scholar
  14. Glonek, G. F. V., and P. J. Solomon. 2004. Factorial and time course designs for cDNA microarray experiments. Biostatistics, 5, 89–111.CrossRefGoogle Scholar
  15. Graczyk, M. 2011. A-optimal biased spring balance weighing design. Kybernetika, 47, 893–901.MathSciNetzbMATHGoogle Scholar
  16. Harwit, M., and N. J. A. Sloane. 1979. Hadamard transform optics. New York, Academic Press.zbMATHGoogle Scholar
  17. Hotelling, H. 1944. Some improvements in weighing and other experimental techniques. Ann. Math. Stat., 15, 297–306.MathSciNetCrossRefGoogle Scholar
  18. Jacroux, M., and W. I. Notz. 1983. On the optimality of spring balance weighing designs. Ann. Stat., 11, 970–978.MathSciNetCrossRefGoogle Scholar
  19. Jacroux, M., C. S. Wong, and J. C. Masaro. 1983. On the optimality of chemical balance weighing designs. J. Stat. Plan. Inference, 8, 231–240.MathSciNetCrossRefGoogle Scholar
  20. Kiefer, J. 1974. General equivalence theory for optimum designs (approximate theory). Ann. Stat., 2, 849–879.MathSciNetCrossRefGoogle Scholar
  21. Kiefer, J. 1975. Optimality and construction of generalized Youden designs. In A survey of statistical designs and linear models, ed. J. N. Srivastava, 333–353. Amsterdam, The Netherlands: North-Holland.Google Scholar
  22. Kounias, S., and T. Chadjipantelis. 1983. Some D-optimal weighing designs for n = 3 (mod 4). J. Stat. Plan. Inference, 8, 117–127.MathSciNetCrossRefGoogle Scholar
  23. Kounias, S., and N. Farmakis. 1984. A construction of D-optimal weighing designs when n = 3 mod 4. J. Stat. Plan. Inference, 10, 177–187.MathSciNetCrossRefGoogle Scholar
  24. Marshall, A. W., and I. Olkin. 1979. Inequalities: Theory of majorization and its applications. New York, NY: Academic Press.zbMATHGoogle Scholar
  25. Mukerjee, R., and B. Tang. 2012. Optimal fractions of two-level factorials under a baseline parameterization. Biometrka, 99, 71–84.MathSciNetCrossRefGoogle Scholar
  26. Pukelsheim, F. 1989. Complete class results for linear regression designs over the multi-dimensional cube. In Contributions to probability and statistics. Essays in honor of Ingram Olkin, ed. L. J. Gleser, M. D. Perlman, S. J. Press, and A. R. Sampson, 349–356, New York, Springer.CrossRefGoogle Scholar
  27. Raghavarao D. (1971). Constructions and combinatorial problems in design of experiments. New York, NY: Wiley.zbMATHGoogle Scholar
  28. Shah, K. R., and B. K. Sinha. 1989 Theory of optimal designs. New York, Springer.CrossRefGoogle Scholar
  29. Yang, C. H. 1966. Some designs for maximizing (+1, −1) determinant of order n = 2 (mod 4). Math. Comput., 20, 147–148.zbMATHGoogle Scholar
  30. Yang, C. H. 1968. On designs of maximal (+1, −1) matrices of order n = 2 (mod 4). Math. Comput., 22, 174–180.MathSciNetzbMATHGoogle Scholar
  31. Yang, Y. H., and T. Speed. 2002. Design issues for cDNA microarray experiments. Nat. Genet. (Suppl.), 3, 579–588.CrossRefGoogle Scholar
  32. Yates, F. 1935. Complex experiments. J. R. Stat. Soc. Ser. B, 2, 181–223.Google Scholar

Copyright information

© Grace Scientific Publishing 2014

Authors and Affiliations

  1. 1.University of CaliforniaBerkeleyUSA
  2. 2.Institute of Statistical ScienceAcademia SinicaTaipeiTaiwan

Personalised recommendations