Advertisement

Journal of Statistical Theory and Practice

, Volume 7, Issue 4, pp 687–702 | Cite as

Identification of Dispersion Effects in Replicated Two-Level Fractional Factorial Experiments

  • Cheryl Dingus
  • Bruce Ankenman
  • Angela Dean
  • Fangfang Sun
Article

Abstract

Tests for dispersion effects in replicated two-level factorial experiments assuming a location-dispersion model are presented. The tests use individual measures of dispersion that remove the location effects and also provide an estimate of pure error. Empirical critical values for two such tests are given for two-level full or regular fractional factorial designs with 8, 16, 32, and 64 runs. The powers of the tests are examined under normal, exponential, and Cauchy distributed errors. Our recommended test uses dispersion measures calculated as deviations of the data values from their cell medians, and this test is illustrated via an example.

Keywords

Dispersion measures Location-dispersion model Fractional factorial experiment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aitkin, M. (1987). Modelling variance heterogeneity in normal regression using GLIM. Appl. Stat., 36, 332–339.CrossRefGoogle Scholar
  2. Ankenman, B. E., and A. M. Dean. 2003. Quality improvement and robustness via design of experiments. In Handbook of statistics, ed. C. R. Rao, and R. Khattree, vol. 22, 263–317. Amsterdam, The Netherlands, Elsevier.Google Scholar
  3. Bartlett, M. S., and D. G. Kendall. 1946. The statistical analysis of variance-heterogeneity and the logarithmic transformation. Suppl. J. R. Stat. Soc., 8, 128–138.MathSciNetCrossRefGoogle Scholar
  4. Bergman, B., and A. Hynén. 1997. Dispersion effects from unreplicated designs in the 2kp series. Technometrics, 39, 191–198.MathSciNetzbMATHGoogle Scholar
  5. Box, G. E., and R. D. Meyer. 1986. Dispersion effects from fractional designs. Technometrics, 28, 19–27.MathSciNetCrossRefGoogle Scholar
  6. Box, G. E. P. 1988. Signal-to-noise ratios, performance criteria, and transformations. Technometrics, 30, 1–17.MathSciNetCrossRefGoogle Scholar
  7. Box, G. E. P., W. G. Hunter. and J. S. Hunter. 1978. Statistics for experimenters: An introduction to design, data analysis, and model building. New York, NY, John Wiley & Sons.zbMATHGoogle Scholar
  8. Brenneman, W. A., and V. N. Nair. 2001. Methods for identifying dispersion effects in unreplicated factorial experiments. Technometrics, 43, 388–405.MathSciNetCrossRefGoogle Scholar
  9. Brown, M., and A. Forsythe. 1974. Robust tests for the equality of variances. J. Am. Stat. Assoc., 69, 364–367.CrossRefGoogle Scholar
  10. Bursztyn, D., and D. M. Steinberg. 2006. Screening experiments for dispersion effects. In Screening: Methods for experimentation in industry, drug discovery, and genetics, ed. A. M. Dean and S. M. Lewis. 21–47. New York, NY: Springer.CrossRefGoogle Scholar
  11. Cook, R. D., and S. Weisberg. 1983. Diagnostics for heteroscedasticity in regression. Biometrika, 70, 1–10.MathSciNetCrossRefGoogle Scholar
  12. Dean, A., and D. Voss. 1999. Design and analysis of experiments. New York, NY, Springer.CrossRefGoogle Scholar
  13. Dingus, C. A. V. 2005. Designs and methods for the identification of active location and dispersion effects. Ph.D. thesis, The Ohio State University, Columbus, OH.Google Scholar
  14. Haaland, P., and M. O’Connell. 1995. Inference for effect-saturated fractional fatorials. Technometrics, 37, 82–93.CrossRefGoogle Scholar
  15. Harvey, A. C. 1976. Estimating regression models with multiplicative heteroscedasticity. Econometrica, 44, 461–465.MathSciNetCrossRefGoogle Scholar
  16. Lenth, R. V. 1989. Quick and easy analysis of unreplicated factorials. Technometrics, 31, 469–473.MathSciNetCrossRefGoogle Scholar
  17. Levene, H. 1960. Robust tests for equality of variances. In Contributions to probability and statistics: Essays in honor of Harold Hotelling, ed. I. Olkin, S. G. Ghurye, W. Hoeffding, W. G. Madow, and H. B. Mann, Stanford, CA, Stanford University Press.Google Scholar
  18. Mackertich, N. A., J. C. Benneyan, and P. D. Kraus. 2003. Alternate dispersion measures in replicated factorial experiments. Unpublished manuscript. http://www1.coe.neu.edu/∼benneyan/papers/doe_dispersion.pdf
  19. McGrath, R. N., and D. K. J. Lin. 2001a. Confounding of location and dispersion effects in unreplicated fractional factorials. J. Quality Technol, 33, 129–139.CrossRefGoogle Scholar
  20. McGrath, R. N., and D. K. J. Lin. 2001b. Testing multiple dispersion effects in unreplicated two-level fractional factorial designs. Technometrics, 43, 406–414.MathSciNetCrossRefGoogle Scholar
  21. Miller, A. 2005. The analysis of unreplicated factorial experiments using all possible comparisons. Technometrics, 47, 51–63.MathSciNetCrossRefGoogle Scholar
  22. Montgomery, D. C. 2009. Design and analysis of experiments. 7th ed. New York, NY, John Wiley & Sons.Google Scholar
  23. Nair, V. J., and D. Pregibon. 1988. Analyzing dispersion effects from replicated factorial experiments. Technometrics, 30, 247–257.MathSciNetCrossRefGoogle Scholar
  24. Pan, G. 1999. The impact of unidentified location effects on dispersion—effects identification from unreplicated designs. Technometrics, 41, 313–326.MathSciNetCrossRefGoogle Scholar
  25. Pignatiello, J. J., and J. S. Ramberg. 1985. Discussion of “Off-line Quality Control, Parameter Design, and the Taguschi Method” by R.N. Kackar. J. Quality Technol., 17, 198–206.CrossRefGoogle Scholar
  26. Pignatiello, J. J., and J. S. Ramberg. 1987. Comments on “Performance Measures Independent of Adjustment: An Explanation and Extension of Taguchi’s Signal-to-noise Ratios.” Technometrics, 29, 274–277.Google Scholar
  27. Verbyla, A. P. 1993. Modelling variance heterogeneity: residual maximum likelihood and diagnostics. J. R. Stat. Soc. Ser. B, 55, 493–508.MathSciNetzbMATHGoogle Scholar
  28. Wang, P. C. 1989. Tests for dispersion effects from orthogonal arrays. Comput. Stat. Data Anal., 8, 109–117.CrossRefGoogle Scholar
  29. Wolfe, D. A., A. M. Dean, M. D. Wiers, and B. A. Hartlaub. 1992. Nonparametric rank based main effects test procedures for the two-way layout in the presence of interaction. J. Nonparametric Stat., 1, 241–252.MathSciNetCrossRefGoogle Scholar
  30. Wolfinger, R. D., and R. D. Tobias. 1998. Joint estimation of location, dispersion, and random effects in robust design. Technometrics, 40, 62–71.CrossRefGoogle Scholar
  31. Wu, C. F. J., and M. Hamada. 2000. Experiments: Planning, analysis, and parameter design optimization. New York, NY, John Wiley & Sons.zbMATHGoogle Scholar

Copyright information

© Grace Scientific Publishing 2013

Authors and Affiliations

  • Cheryl Dingus
    • 1
  • Bruce Ankenman
    • 2
  • Angela Dean
    • 3
    • 4
  • Fangfang Sun
    • 5
  1. 1.Battelle Memorial InstituteColumbusUSA
  2. 2.Department of Industrial EngineeringNorthwestern UniversityEvanstonUSA
  3. 3.Department of MathematicsUniversity of SouthamptonSouthamptonUK
  4. 4.Department of StatisticsThe Ohio State UniversityColumbusUSA
  5. 5.Department of Management Science and EngineeringHarbin Institute of TechnologyHarbin, HeilongjiangChina

Personalised recommendations