Advertisement

Journal of Statistical Theory and Practice

, Volume 8, Issue 3, pp 418–422 | Cite as

On the A Criterion of Experimental Design

  • J. P. Morgan
  • J. W. Stallings
Article

Abstract

Consider a linear model with targeted parameters τ. We derive a necessary and sufficient condition on the matrix M for the average variance of functions \(\widehat {{M_\tau}}\) to be proportional to the A value for comparing designs. This establishes the full range of interpretations of the A criterion.

Keywords

Average variance criterion Design efficiency Design optimality criteria Experimental design 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atkinson, A. C., A. N. Donev, and R. D. Tobias. 2007. Optimum experimental designs, with SAS. Vol. 34 of Oxford Statistical Science Series. Oxford, UK: Oxford University Press.zbMATHGoogle Scholar
  2. Hedayat, A. S., N. J. A. Sloane, and J. Stufken. 1999. Orthogonal arrays. Springer Series in Statistics. New York, NY: Springer-Verlag.CrossRefGoogle Scholar
  3. Kao, L.-J., P. K. Yates, S. M. Lewis, and A. M. Dean. 1995. Approximate information matrices for estimating a given set of contrasts. Stat. Sinica, 5, 593–598.MathSciNetzbMATHGoogle Scholar
  4. Kempthorne, O. 1956. The efficiency factor of an incomplete block design. Ann. Math. Stat., 27, 846–849.MathSciNetCrossRefGoogle Scholar
  5. Kiefer, J. 1958. On the nonrandomized optimality and randomized nonoptimality of symmetrical designs. Ann. Math. Stat., 29, 675–699.MathSciNetCrossRefGoogle Scholar
  6. Kiefer, J. 1959. Optimum experimental designs. J. R. Stat. Soc. Ser. B, 21, 272–319.MathSciNetzbMATHGoogle Scholar
  7. Liski, E. P., N. K. Mandal, K. R. Shah, and B. K. Sinha. 2002. Topics in optimal design. Vol. 163 of Lecture Notes in Statistics. New York, NY: Springer-Verlag.zbMATHGoogle Scholar
  8. Rencher, A. C., and G. B. Schaalje. 2008. Linear models in statistics, 2nd ed. Hoboken, NJ: Wiley-Interscience.zbMATHGoogle Scholar
  9. Searle, S. R. 1997. Linear models. Wiley Classics Library. New York, NY: John Wiley & Sons. (Originally published 1971.)CrossRefGoogle Scholar
  10. Shah, K. R., and B. K. Sinha. 1989. Theory of optimal designs. Vol. 54 of Lecture Notes in Statistics. New York, NY: Springer-Verlag.zbMATHGoogle Scholar

Copyright information

© Grace Scientific Publishing 2014

Authors and Affiliations

  1. 1.Department of StatisticsVirginia TechBlacksburgUSA

Personalised recommendations