Journal of Statistical Theory and Practice

, Volume 7, Issue 1, pp 120–132 | Cite as

A Practical Guide to Measuring Social Structure Using Indirectly Observed Network Data

  • Tyler H. McCormick
  • Amal Moussa
  • Johannes Ruf
  • Thomas A. DiPrete
  • Andrew Gelman
  • Julien Teitler
  • Tian ZhengEmail author


Aggregated relational data (ARD) are an increasingly common tool for learning about social networks through standard surveys. Recent statistical advances present social scientists with new options for analyzing such data. In this article, we propose guidelines for learning about various network processes using ARD and a template to aid practitioners. We first propose that ARD can be used to measure “social distance” between a respondent and a subpopulation (individuals named Kevin, those in prison, or those serving in the military). We then present common methods for analyzing these data and associate each of these methods with a specific way of measuring social distance, thus associating statistical tools with their underlying social science phenomena. We examine the implications of using each of these social distance measures using an Internet survey about contemporary political issues.


Aggregated relational data hierarchical model opinion formation sampling bias overdispersed Poisson distribution sample survey social network 

AMS classifications

62-07 62P25 91D30 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bottero, W., and K. Prandy. 2003. Social interaction distance and stratification. Br. J. Sociol., 54(2), 177–197.CrossRefGoogle Scholar
  2. Burt, R. S. 1982. Studying status/role-sets using mass surveys. In Applied network analysis, ed. R. S. Burt and M. J. Minor, 100–118. Thousand Oaks, CA, Sage.Google Scholar
  3. Burt, R. S. 1987. Social contagion and innovation: Cohesion versus structural equivalence. Am. J. Sociol., 92, 1287–1335.CrossRefGoogle Scholar
  4. DiPrete, T. A., A. Gelman, T. H. McCormick, J. Teitler, and T. Zheng. 2010. Segregation in social networks based on acquaintanceship and trust. Am. J. Sociol., 116(4), 1234–1283.CrossRefGoogle Scholar
  5. Erickson, B. H. 1988. The relational basis of attitudes. In Social structures: A network approach, ed. B. Wellman and S. D. Berkowitz, 99–121. Cambridge, UK, Cambridge University Press.Google Scholar
  6. French, J. R. P., and B. H. Raven. 1959. The social basis of power. In Studies in social power, ed. D. Cartwright, 150–167. Ann Arbor, University of Michigan Press.Google Scholar
  7. Hastie, T., R. Tibshirani, and J. Friedman. 2001. The elements of statistical learning. New York, Springer.CrossRefGoogle Scholar
  8. Kalmijn, M. (1994). Assortative mating by cultural and economic occupational status. Am. J. Sociol., 100(2), 422–452.CrossRefGoogle Scholar
  9. Killworth, P. D., E. C. Johnsen, C. McCarty, G. A. Shelly, and H. R. Bernard. 1998a. A social network approach to estimating seroprevalence in the United States. Social Networks, 20, 23–50.CrossRefGoogle Scholar
  10. Killworth, P. D., C. McCarty, H. R. Bernard, E. C. Johnsen, J. Domini, and G. A. Shelly. 2003. Two interpretations of reports of knowledge of subpopulation sizes. Social Networks, 25, 141–160.CrossRefGoogle Scholar
  11. Killworth, P. D., C. McCarty, H. R. Bernard, G. A. Shelly, and E. C. Johnsen. 1998b. Estimation of seroprevalence, rape, and homelessness in the U.S. using a social network approach. Eval. Rev., 22, 289–308.CrossRefGoogle Scholar
  12. Killworth, P. D., C. McCarty, E. C. Johnsen, H. R. Bernard, and G. A. Shelley. 2006. Investigating the variation of personal network size under unknown error conditions. Sociol. Methods Res., 35(1), 84–112.MathSciNetCrossRefGoogle Scholar
  13. McCormick, T. H., A. Moussa, J. Ruf, T. A. DiPrete, A. Gelman, J. Teitler, and T. Zheng. 2009. Comparing two methods for predicting opinions using social structure. In Proceedings of the Joint Statistical Meetings, August, Washington, DC, American Statistical Association.Google Scholar
  14. McCormick, T. H., M. J. Salganik, and T. Zheng. 2010. How many people do you know?: Efficiently estimating personal network size. J. Am. Stat. Assoc., 105(489), 59–70.MathSciNetCrossRefGoogle Scholar
  15. Moscovici, S. 1985. Social inuence and conformity. In Lindzey, G. and Aronson, E., editors, The Handbook of Social Psychology, volume 2, pages 347–412. Random House.Google Scholar
  16. Newman, M. E. J. 2003. The structure and function of complex networks. SIAM Rev., 45, 167–256.MathSciNetCrossRefGoogle Scholar
  17. Venables, W. N., and B. D. Ripley. 2002. Modern applied statistics with S. New York, Springer.CrossRefGoogle Scholar
  18. Zheng, T., M. J. Salganik, and A. Gelman. 2006. How many people do you know in prison?: Using overdispersion in count data to estimate social structure. J. Am. Stat. Assoc., 101, 409–423.MathSciNetCrossRefGoogle Scholar

Copyright information

© Grace Scientific Publishing 2013

Authors and Affiliations

  • Tyler H. McCormick
    • 1
  • Amal Moussa
  • Johannes Ruf
    • 2
  • Thomas A. DiPrete
    • 3
  • Andrew Gelman
    • 4
  • Julien Teitler
    • 5
  • Tian Zheng
    • 6
    Email author
  1. 1.Department of Statistics and Department of SociologyUniversity of WashingtonSeattleUSA
  2. 2.Oxford-Man Institute of Quantitative Finance and Mathematical InstituteUniversity of oxfordOxfordUK
  3. 3.Department of SociologyUniversity of Wisconsin-MadisonMadisonUSA
  4. 4.Department of Statistics and Department of Political ScienceColumbia UniversityNew YorkUSA
  5. 5.School of Social WorkColumbia UniversityNew YorkUSA
  6. 6.Department of StatisticsColumbia UniversityNew YorkUSA

Personalised recommendations