Advertisement

Extreme Value Analysis of Multivariate High-Frequency Wind Speed Data

  • Christina Steinkohl
  • Richard A. Davis
  • Claudia Klüppelberg
Article

Abstract

In this article we analyze the extremal behavior of wind speed with a measurement frequency of 8 Hz, measured on three meteorological masts in Denmark. In the first part of this article we set up a conditional model for the time series consisting of threshold exceedances from maxima per second for two consecutive days. The model directly captures the nonstationary nature of wind speed during the day. Conditional on previous wind speed values with recorded exceedance, we assume a Markov-like structure for exceedances, where the conditional distribution follows the generalized Pareto distribution. In addition, we analyze the dependence structure in large wind speed values between different masts by using bivariate extreme value models. The initial motivation for this research was in the context of renewable energy. Specifically, the extremal dynamics of wind speed at small time scales plays a critical role for designing and locating turbines on wind farms.

Keywords

Wind speed generalized Pareto distribution bivariate extreme value theory 

AMS Subject Classifications

primary: 62G32 secondary: 62M10 60G70 62-07 regression, etc. analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akaike, H. 1973. Information theory and an extension of the maximum likelihood principle. 2nd International Symposium on Information Theory, Tsahkadsor, Armenia, USSR, September, 1971. 267–281.Google Scholar
  2. Barndorff-Nielsen, O., and J. Schmiegel. 2007. Time change, volatility, and turbulence, 29–53. Berlin, Germany, Springer.MATHGoogle Scholar
  3. Beirlant, J., Y. Goegebeur, J. Segers, and J. Teugels. 2004. Statistics of extremes, Theory and applications. Wiley Series in Probability. New York, NY, Wiley.Google Scholar
  4. Búcher, A., H. Dette, and S. Volgushev. 2011. New estimators of the pickands dependence function and a test for extreme-value dependence. Ann. Stat., 39(4), 1963–2006.MathSciNetCrossRefGoogle Scholar
  5. Burton, T., D. Sharpe, N. Jenkins, and E. Bossanyi. 2001. Wind energy handbook. Chichester, UK, John Wiley & Sons.CrossRefGoogle Scholar
  6. Coles, S. G. 2001. An Introduction to statistical modeling of extreme values. Springer Series in Statistics. New York, NY, Springer.Google Scholar
  7. Coles, S. G., and D. Walshaw. 1994. Directional modelling of extreme wind speeds. J. R. Stat. Soc. Ser. C, 43, 139–157.MATHGoogle Scholar
  8. Cooley, D., D. Nychka, and P. Naveau. 2007. Bayesian spatial modeling of extreme precipitation return levels. J. Am. Stat. Assoc., 102(479), 824–840.MathSciNetCrossRefGoogle Scholar
  9. Davis, R. A., C. Klüppelberg, and C. Steinkohl. 2013a. Max-stable processes for extremes of processes observed in space and time. Journal of the Korean Statistical Society. Submitted.Google Scholar
  10. Davis, R. A., C. Klüppelberg, and C. Steinkohl. 2013b. Statistical inference for max-stable space-time processes. Journal of the Royal Statistical Society B. Submitted.Google Scholar
  11. Davison, A., and R. Smith. 1990. Models for exceedances over high thresholds (with discussion). J. R. Stat. Soc. Ser. B, 52, 393–442.MATHGoogle Scholar
  12. de Carvalho, M., B. Oumow, J. Segers, and M. Warchol. 2013. A euclidean likelihood estimator for bivariate tail dependence. Communications in Statistics — Theory and Methods. Submitted.Google Scholar
  13. Einmahl, J. H. J., and J. Segers. 2009. Maximum empirical likelihood estimation of the spectral measure of an extreme-value distribution. Ann. Stat., 37(5B), 2953–2989.MathSciNetCrossRefGoogle Scholar
  14. Embrechts, P., C. Klüppelberg, and T. Mikosch. 1997. Modelling extremal events. Berlin, Springer Verlag.CrossRefGoogle Scholar
  15. Falk, M., J. Hüsler, and R.D. Reiss. 2000. Laws of small numbers: Extremes and rare events. 2nd ed. Basel, Birkhuser Verlag.MATHGoogle Scholar
  16. Geffroy, J. 1958/1959. Contributions à la théorie des valeurs extrême. Publ. Inst. Stat. Univ. Paris, 7/8(7), 36–123; (8), 3–52.Google Scholar
  17. Gumbel, E. J. 1958. Statistics of extremes. New York, NY, Columbia University Press.MATHGoogle Scholar
  18. Holmes, J. D., and W. W. Moriarty. 1999. Application of the generalized pareto distribution to extreme value analysis in wind engineering. J. Wind Eng. Ind. Aerodynamics, 83, 1–10.CrossRefGoogle Scholar
  19. Joe, H., R. L. Smith, and I. Weissman. 1992. Bivariate threshold methods for extremes. J. R. Stat. Soc. B, 54, 171–183.MathSciNetMATHGoogle Scholar
  20. Nielsen, M., G. Larsen, J. Mann, S. Ott, K. Hansen, and B. Pedersen. 2003. Wind simulation for extreme and fatigue loads. Technical report, Risø, Denmark, Risø National Laboratory.Google Scholar
  21. Resnick, S. I. 1987. Extreme values, regular variation, and point processes. New York, NY, Springer.CrossRefGoogle Scholar
  22. Ronald, K., and G. Larsen. 1999. Variability of extreme flap loads during turbine operation. In Wind energy for the next millenium: Proceedings of the European Wind Energy Conference, ed. E. Peterson, 224–228. London, UK, James & James Science Publishers Ltd.Google Scholar
  23. Sang, H., and A. Gelfand. 2009. Hierarchical modeling for extreme values observed over space and time. Environ. Ecol. Stat., 16(3), 407–426.MathSciNetCrossRefGoogle Scholar
  24. Schlather, M. 2002. Models for stationary max-stable random fields. Extremes, 5(1), 33–44.MathSciNetCrossRefGoogle Scholar
  25. Sibuya, M. 1960. Bivariate extreme statistics. Ann. Inst. Stat. Math., 11, 195–210.MathSciNetCrossRefGoogle Scholar
  26. Simiu, E., and N. Heckert. 1996. Extreme wind distribution tails: A “peaks over threshold” approach. J. Struct. Eng., 122, 539–547.CrossRefGoogle Scholar
  27. Smith, R. L. 1990. Max-stable processes and spatial extremes. Unpublished manuscript, University of North California.Google Scholar
  28. Smith, R. L. 1987. Estimating tails of probability distributions. Ann. Stat., 15, 1174–1207.MathSciNetCrossRefGoogle Scholar
  29. Tawn, J. A. 1988. Bivariate extreme value theory: Models and estimation. Biometrika, 75, 397–415.MathSciNetCrossRefGoogle Scholar
  30. Walshaw, D., and Anderson, C. W. 2000. A model for extreme wind gusts. Appl. Stat., 49, 499–508.MathSciNetGoogle Scholar
  31. World Wind Energy Association. 2008/2009. World wind energy report 2008, 2009. www.wwindea.org

Copyright information

© Grace Scientific Publishing 2013

Authors and Affiliations

  • Christina Steinkohl
    • 1
  • Richard A. Davis
    • 2
  • Claudia Klüppelberg
    • 1
  1. 1.Center of Mathematical SciencesTechnische Universität MünchenGarchingGermany
  2. 2.Department of StatisticsColumbia UniversityNew YorkUSA

Personalised recommendations