Advertisement

Randomized Response Group Testing Model

  • Jong-Min Kim
  • Tae-Young Heo
Article

Abstract

In this article, we propose randomized response-group testing (RR-GT) models. Randomized response technique and the group testing method have long been recognized as sampling schemes that can provide substantial benefits. In order to obtain both confidentiality and economic benefits from a sensitive issue survey sampling, we incorporate the group testing method into the most popular two randomized response models, which are Warner’s RR model and unrelated question RR model. Empirical comparisons are provided and discussed.

Keywords

Randomized response group testing confidentiality maximum likelihood sensitive questions 

AMS Subject Classification

62D05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Böckenholt, U., and P. G. M. Van der Heijden. 2007. Item randomized-response models for measuring noncompliance: Risk-return perceptions, social influences, and self-protective responses. Psychometrika, 72(2), 245–262.MathSciNetCrossRefGoogle Scholar
  2. Chaudhuri, A. 2011. Randomized response and indirect questioning techniques in surveys. Statistics: Textbooks and Monographs. Boca Raton, FL, CRC Press.MATHGoogle Scholar
  3. Clark, S. J., and R. A. Desharnais. 1998. Honest answers to embarrassing questions: Detecting cheating in the randomized response model. Psychological Methods, 3, 160–168.CrossRefGoogle Scholar
  4. Chaudhuri, A., and S. Pal. 2002. Estimating proportions from unequal probability samples using randomized responses by Warner’s and other devices. J. Indian Soc. Agric. Stat., 55(2), 174–183.MathSciNetMATHGoogle Scholar
  5. Chen, C. L., and W. H. Swallow. 1990. Using group testing to estimate a proportion, and to test the binomial model Biometrics, 46, 1035–1046.CrossRefGoogle Scholar
  6. Christofides, T. C. 2003. A generalized randomized response technique. Metrika, 57(2), 195–200.MathSciNetCrossRefGoogle Scholar
  7. Cochran, W. G. (1963). Sampling techniques, 2nd ed. New York, John Wiley & Sons.MATHGoogle Scholar
  8. Diana, G., and P. F. Perri. 2010. Selected scrambled response nodels. 45th Scientific Meeting of the Italian Statistical Society. http://homes.stat.unipd.it/mgri/SIS2010/Program/7-SSVII_Pratesi/874-1477-1-RV.pdf.
  9. Dorfman, R. 1943. The detection of defective members of large populations. Ann. Math. Stat., 14, 436–440.CrossRefGoogle Scholar
  10. Greenberg, B., A. Abul-Ela, W. Simmons, and D. Horvitz. 1969. The unrelated question randomized response: Theoretical framework. J. Am. Stat. Assoc., 64, 529–539.MathSciNetGoogle Scholar
  11. Houston, J., and A. Tran. 2001. A survey of tax evasion using the randomized response technique. Ad. Taxation, 13, 69–94. Reprinted in S. James (ed.). 2002. Taxation: Critical perspectives on the world economy, 317–330. New York, Routledge.CrossRefGoogle Scholar
  12. Hughes-Oliver, J., and W. Rosenberger. 2000. Efficient estimation of the prevalence of multiple rare traits. Biometrika 87(2), 315–327.MathSciNetCrossRefGoogle Scholar
  13. Kim, J.-M., and W. D. Warde. 2004. A stratified Warner’s randomized response model. J. Stat. Plan. Inf., 120, 155–165.MathSciNetCrossRefGoogle Scholar
  14. Kim, J.-M., and W. D. Warde. 2005. Some new results on the multinomial randomized response model. Commun. Stat. Theory Methods, 34(4), 847–856.MathSciNetCrossRefGoogle Scholar
  15. Kim, J.-M., J. Tebbs, and S.-W. An. 2006. Extensions of Mangat’s randomized-response model. J. Stat. Plan. Inf., 136(4). 1554–1567.MathSciNetCrossRefGoogle Scholar
  16. Mangat, N. S., and S. Singh. 2002. A modified quantitative randomized response model. J. Indian Soc. Agric. Stat., 55(2), 209–219.MathSciNetMATHGoogle Scholar
  17. Singh, H. P., and N. Mathur. 2003. Modified optional randomized response sampling techniques. J. Indian Soc. Agric. Stat., 56(2), 199–206.MathSciNetMATHGoogle Scholar
  18. Singh, R. 1971. Approximately optimum stratification on the auxiliary variable. J. Am. Stat. Soc., 336(2), 829–833.CrossRefGoogle Scholar
  19. Singh, S., M. Mahmood, and D. S. Tracy. 2001. Estimation of mean and variance of stigmatized quantitative variable using distinct units in randomized response sampling. Stat. Papers, 42(3), 403–411.MathSciNetCrossRefGoogle Scholar
  20. Warner, S. 1965. Randomized response: A survey technique for eliminating evasive answer bias. J. Am. Stat. Assoc., 60, 63–69.CrossRefGoogle Scholar

Copyright information

© Grace Scientific Publishing 2013

Authors and Affiliations

  1. 1.Statistics Discipline, Division of Science and MathematicsUniversity of Minnesota-MorrisMorrisUSA
  2. 2.Department of Information StatisticsChungbuk National UniversityCheongju, ChungbukRepublic of Korea

Personalised recommendations