A Bayesian Approach to Bandwidth Selection in Univariate Associate Kernel Estimation

  • Nabil Zougab
  • Smail AdjabiEmail author
  • Célestin C. Kokonendji


The fundamental problem in the associate kernel estimation of density or probability mass function (pmf) is the choice of the bandwidth. In this paper, we use a Bayesian approach based upon likelihood cross-validation and a Monte Carlo Markov chain (MCMC) method for deriving the global optimal bandwidth. A comparative simulation study of the MCMC method and the classical methods that adopt the asymptotic mean integrated square error (AMISE) as criterion and the cross validation is presented for data generated from known densities and pmf, using standard AMISE and the practical integrated squared error. The simulation results show the superiority of the MCMC method over the classical methods.


Cross validation likelihood MCMC method 

AMS Subject Classification

62G07 62G90 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bauwens, L., and M. Lubrano. 1998. Bayesian inference on GARCH models using the Gibbs sampler. Econometrics J., 1, C23–C46.CrossRefGoogle Scholar
  2. Bowman, A. W. 1984. An alternative method of cross-validation for the smoothing of density estimates. Biometrika, 71, 353–360.MathSciNetCrossRefGoogle Scholar
  3. Brewer, M. J. 2000. A Bayesian model for local smoothing in kernel density estimation. Statistics and Computing, 10, 299–309.CrossRefGoogle Scholar
  4. Gelman, A., J. B. Carlin, H. S. Stern, and D. B. Rubin. 1995. Bayesian data analysis. London, UK, Chapman and Hall.zbMATHGoogle Scholar
  5. Gelman, A., G. O. Roberts, and W. R. Gilks. 1996. Efficient metropolis jumping rules. Bayesian Statistics, 5, 599–608.MathSciNetGoogle Scholar
  6. Gelman, A., and D. B. Rubin. 1992. Inference from iterative simulation using multiple sequences. Statistical Science, 7, 457–511.CrossRefGoogle Scholar
  7. Hall, P., J. S. Marron, and B. U. Park. 1992. Smoothed cross validation. Probability Theory and Related Fields, 92, 1–20.MathSciNetCrossRefGoogle Scholar
  8. Kokonendji, C. C., and T. Senga Kiessé. 2011. Discrete associated kernels method and extensions. Statistical Methodology, 8, 497–516.MathSciNetCrossRefGoogle Scholar
  9. Kokonendji, C. C., T. Senga Kiessé, and N. Balakrishnan. 2009. Semiparametric estimation for count data through weighted distributions. J. Stat. Plan. Inf., 139, 3625–3638.MathSciNetCrossRefGoogle Scholar
  10. Kokonendji, C. C., T. Senga Kiessé, and S. S. Zocchi. 2007. Discrete triangular distributions and non-parametric estimation for probability mass function. J. Nonparametric Stat., 19, 241–257.MathSciNetCrossRefGoogle Scholar
  11. Kokonendji, C. C., and S. S. Zocchi. 2010. Extensions of discrete triangular distributions and boundary bias in kernel estimation for discrete functions. Stat. Prob. Lett., 80, 1655–1662.MathSciNetCrossRefGoogle Scholar
  12. Leonard, T. (1978). Density estimation, stochastic processes and prior information. J. R. Stat. Soc. Ser. B, 40, 113–146.MathSciNetzbMATHGoogle Scholar
  13. Parzen, E. (1962). On estimation of a probability density function and mode. Ann. Math. Stat., 33, 1065–1076.MathSciNetCrossRefGoogle Scholar
  14. Raftery, A. E., and S. Lewis. 1992. How many iterations in the Gibbs sampler? Bayesian Stat., 4, 763–773.Google Scholar
  15. Rosenblatt, M. 1956. Remarks in some nonparametric estimates of a density function. Ann. Math. Stat., 27, 832–837.CrossRefGoogle Scholar
  16. Rudemo, M. 1982. Empirical choice of histograms and kernel density estimators. Scand. J. Stat., 9, 65–78.MathSciNetzbMATHGoogle Scholar
  17. Sheather, S. J., and M. C. Jones. 1991. A reliable data-based bandwidth selection method for kernel density estimation. J. R. Stat. Soc. Ser. B, 53, 683–690.MathSciNetzbMATHGoogle Scholar
  18. Silverman, B. W. 1986. Density estimation for statistics and data analysis. New York, NY, Chapman and Hall.CrossRefGoogle Scholar
  19. Simonoff, J. S., and G. Tutz. 2000. Smoothing methods for discrete data. In Smoothing and regression: Approaches, computation, and application, ed. M. G. Schimek, 193–228. New York, NY, Wiley.zbMATHGoogle Scholar
  20. Terrell, G. R., and D. W. Scott. 1982. Biased and unbiased cross-validation in density estimation. Biometrika, 69, 383–390.MathSciNetCrossRefGoogle Scholar
  21. Zhang, X., M. L. King, and R. J. Hyndman. 2006. A bayesian approach to bandwidth selection for multivariate kernel density estimation. Comput. Stat. Data Anal., 50, 3009–3031.MathSciNetCrossRefGoogle Scholar

Copyright information

© Grace Scientific Publishing 2013

Authors and Affiliations

  • Nabil Zougab
    • 1
  • Smail Adjabi
    • 1
    Email author
  • Célestin C. Kokonendji
    • 2
  1. 1.LAMOS LaboratoryUniversity of BejaiaBejaiaAlgeria
  2. 2.LMB UMR 6623 CNRSUniversity of Franche-ComtéBesançon CedexFrance

Personalised recommendations