Advertisement

Journal of Statistical Theory and Practice

, Volume 6, Issue 4, pp 760–782 | Cite as

A Parametric Study for the First-Order Signed Integer-Valued Autoregressive Process

  • Christophe Chesneau
  • Maher Kachour
Article

Abstract

In recent years, many attempts have been made to find accurate models for integer-valued times series. The SINAR (for Signed INteger-valued AutoRegressive) process is one of the most interesting. Indeed, the SINAR model allows negative values both for the series and its autocorrelation function. In this paper, we focus on the simplest SINAR(1) model under some parametric assumptions. Explicitly, we give an implicit form of the stationary distribution for a known innovation. Simulation experiments and analysis of real data sets are carried out to attest to the model’s performance.

Keywords

Integer-valued time series INAR models SINAR models Rademacher (p)-ℕ class Skellam distribution 

AMS Subject Classification

62M10 62M20 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alzaid, A. A., and M. A. Al-Osh. 1987. First-order integer-valued autoregressive (INAR(1)) process. J. Time Ser. Anal., 8(3), 261–275.MathSciNetCrossRefGoogle Scholar
  2. Alzaid, A. A., and M. A. Al-Osh. 1990. An integer-valued pth-order autoregressive structure (INAR(p)) process. J. Appl. Probab., 27(2), 314–324.MathSciNetCrossRefGoogle Scholar
  3. Alzaid, A. A., and M. A. Omair. 2010. On the Poisson difference distribution inference and applications. Bull. Malaysian Math. Sci. Society, 8(33), 17–45.MathSciNetzbMATHGoogle Scholar
  4. Bakouch, H. S., and M. M. Ristić. 2010. Zero truncated poisson integer-valued AR(1) model. Metrika, 72(2), 265–280.MathSciNetCrossRefGoogle Scholar
  5. Dacunha, D., and M. Duflo. 1983. Probabilités et Statistiques. Tome 2: Problèmes à temps mobile. Paris, Masson.zbMATHGoogle Scholar
  6. Du, J.-G., and Y. Li. 1991. The integer-valued autoregressive (INAR(p)) model. J. Time Ser. Anal., 12, 129–142.MathSciNetCrossRefGoogle Scholar
  7. Freeland, R. K. 2010. True integer value time series. Adv. Stat. Analy., 94, 217–229.MathSciNetCrossRefGoogle Scholar
  8. Gauthier, G., and A. Latour. 1994. Convergence forte des estimateurs des paramètres d’un processus GENAR(p). Ann. Sci. Math. Quebec, 18(1), 49–71.MathSciNetzbMATHGoogle Scholar
  9. Kozubowski, T. J., and S. Inusah. 2006. A skew Laplace distribution on integers. Ann. Inst. Stat. Math., 58(3), 555–571.MathSciNetCrossRefGoogle Scholar
  10. Jung, R. C., and A. R. Tremayne. 2006. Binomial thinning models for integer time series. Stat. Model., 6(2), 81–96.MathSciNetCrossRefGoogle Scholar
  11. Kachour, M. 2013. On the rounded integer-valued autoregressive process. Commun. Stat. Theory Methods, (in press).MathSciNetCrossRefGoogle Scholar
  12. Kachour, M., and L. Truquet. 2011. A p-order signed integer-valued autoregressive (SINAR(1)) model. J. Time Ser. Anal., 32(4), 223–236.MathSciNetCrossRefGoogle Scholar
  13. Kachour, M., and J. F. Yao. 2009. First-order rounded integer-valued autoregressive (RINAR(1)) process. J. Time Ser. Anal., 30(4), 417–448.MathSciNetCrossRefGoogle Scholar
  14. Karlis, D., and I. Ntzoufras. 2006. Bayesian analysis of the differences of count data. Stat. Med., 25(11), 1885–1905.MathSciNetCrossRefGoogle Scholar
  15. Karlis, D., and I. Ntzoufras. 2009. Bayesian modeling of football outcomes: Using the Skellam’s distribution for the goal difference. J. Manage. Math., 20(2), 133–145.zbMATHGoogle Scholar
  16. Katti, S. K. 1960. Moments of the absolute difference and absolute deviation of discrete distributions. Ann. Stat., 31, 78–85.MathSciNetCrossRefGoogle Scholar
  17. Kedem, B., and K. Fokianos. 2002. Regression models for time series analysis. New York, Wiley Interscience.CrossRefGoogle Scholar
  18. Kemp, A. W. 1997. Characterizations of a discrete normal distribution. J. Stat. Plan. Inference, 63(2), 223–229.MathSciNetCrossRefGoogle Scholar
  19. Kim, H.-Y., and Y. Park. 2008. A non-stationary integer-valued autoregressive model. Stat. Papers, 49(3), 485–502.MathSciNetCrossRefGoogle Scholar
  20. Klimko, L. A., and P. I. Nelson. 1978. On conditional least squares estimation for stochastic process. Ann. Stat., 6, 629–642.CrossRefGoogle Scholar
  21. Latour, A., and L. Truquet. 2008. An integer-valued bilinear type model. Available at: http://hal.archives-ouvertes.fr/hal-00373409.
  22. McKenzie, E. 1985. Some simple models for discrete variate time series. Water Resources Bull., 21(4), 645–650.CrossRefGoogle Scholar
  23. McKenzie, E. 1988. Some ARMA models for dependent sequences of Poisson counts. Adv. Appl. Probab., 20, 822–835.MathSciNetCrossRefGoogle Scholar
  24. McKenzie, E. 2003. Discrete variate time series. In Stochastic processes: Modeling and simulation, vol. 21 of Handbook of Statistics, 573–606. Amsterdam, North Holland.CrossRefGoogle Scholar
  25. Ong, S. H., K. Shimizu, and C. M. Ng. 2008. A class of discrete distributions arising from difference of two random variables. Comput. Stat. Data Anal., 52(3), 1490–1499.MathSciNetCrossRefGoogle Scholar
  26. Ristić, M. M., H. S. Bakouch, and A. S. Nastić. 2009. A new geometric first-order integer-valued autoregressive(NGINAR(1)) process. J. Stat. Plan. Inference, 139, 2218–2226.MathSciNetCrossRefGoogle Scholar
  27. Roy, D. 2003. The discrete normal distribution. Commun. Stat. Theory Methods, 32(10), 1871–1883.MathSciNetCrossRefGoogle Scholar
  28. Skellam, J. G. 1946. The frequency distribution of the difference between two poisson variates belonging to different populations. J. R. Stat. Soc., Ser. A, 109(3), 296.MathSciNetCrossRefGoogle Scholar
  29. Steutel, F. W., and K. van Harn. 1979. Discrete analogues of self-decomposability and stability. Ann. Probab., 7(5), 893–899.MathSciNetCrossRefGoogle Scholar
  30. Szablowski, P. J. 2001. Discrete normal distribution and its relationship with Jacobi theta functions. Stat. Probability Lett., 52(3), 289–299.MathSciNetCrossRefGoogle Scholar
  31. Weiß, C. H. 2008. Thinning operations for modeling time series of counts a survey. ASTA: Adva. Stat. Anal., 92(3), 319–341.MathSciNetCrossRefGoogle Scholar
  32. Zhang, H., D. Wang, and F. Zhu. 2010. Inference for INAR(p) processes with signed generalized power series thinning operator. J. Stat. Plan. Inference, 140(3), 667–683.MathSciNetCrossRefGoogle Scholar

Copyright information

© Grace Scientific Publishing 2012

Authors and Affiliations

  1. 1.Laboratoire de Mathématiques Nicolas OresmeUniversité de Caen Basse-NormandieCaenFrance
  2. 2.École supérienre de commerce IDRACLyonFrance

Personalised recommendations