Journal of Statistical Theory and Practice

, Volume 6, Issue 4, pp 597–620 | Cite as

The Order-Statistic Claim Process With Dependent Claim Frequencies and Severities

  • Kristina P. SendovaEmail author
  • Ričardas Zitikis


Assuming that insurance claims arrive according to a general order-statistic (OS) point process, we explore ways for calculating the first two moments of the aggregate claim, thus facilitating the calculation of, and statistical inference for, quantities of actuarial interest such as the standard-deviation risk measure. We allow the OS process to govern claim sizes via claim arrival or, alternatively, claim interarrival times, which is a practically important feature. Given these general dependence structures and the underlying OS process, the herein obtained results extend and generalize a number of those in the literature.


Claim process Aggregate claim Order-statistic point process OS point process Frequency distribution Severity distribution Risk measure Variance risk measure Standard-deviation risk measure 

AMS Subject Classification

62G30 62P05 60G55 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albrecher, H., and J. T. Teugels. 2006. Exponential behaviour in the presence of dependence in risk theory. J. Appl. Probability, 43, 257–273.MathSciNetCrossRefGoogle Scholar
  2. Asmussen, S., and H. Albrecher. 2010. Ruin probabilities, 2nd ed. Hackensack, NJ, World Scientific Publishing.CrossRefGoogle Scholar
  3. Bebbington, M., and D. Harte, 2001. On the statistics of the linked stress release model. J. Appl. Probability, 38A, 176–187.MathSciNetCrossRefGoogle Scholar
  4. Bebbington, M. 2008. Incorporating the eruptive history in a stochastic model for volcanic eruptions. J. Volcanol. Geothermal Res., 175, 325–3338.CrossRefGoogle Scholar
  5. Bebbington, M. 2011. Volcanic eruptions: stochastic models of occurrence patterns. In Extreme environmental events: Complexity in forecasting and early warning, ed. R. A. Meyers, 1104–1134. New York, Springer.CrossRefGoogle Scholar
  6. Bebbington, M. S., and W. Marzocchi. 2011. Stochastic models for earthquake triggering of volcanic eruptions. J. Geophys. Res., 116, B05204. doi: 10.1029/2010JB008114 CrossRefGoogle Scholar
  7. Bowers, N. L., H. U. Gerber, J. C. Hickman, D. A. Jones, and C. J. Nesbitt. 1997. Actuarial mathematics, 2nd ed. Schaumburg, IL, Society of Actuaries.zbMATHGoogle Scholar
  8. Berg, M., and F. Spizzichino. 2000. Time-lagged point processes with the order-statistics property. Math. Methods Operations Res., 51, 301–314.MathSciNetCrossRefGoogle Scholar
  9. Boudreault, M., H. Cossette, D. Landriault, and E. Marceau. 2006. On a risk model with dependence between interclaim arrivals and claim sizes. Scand. Actuarial J., 5, 256–285.MathSciNetzbMATHGoogle Scholar
  10. Cerqueti, R., R. Foschi, and F. Spizzichino. 2009. A spatial mixed Poisson framework for combination of excess-of-loss and proportional reinsurance contracts. Insurance Math. Econ., 45, 59–64.MathSciNetCrossRefGoogle Scholar
  11. Crump, K. S. 1975. On point processes having an order statistic structure. Sankhyā Ser. A, 37, 396–404.MathSciNetzbMATHGoogle Scholar
  12. Das, K. P., A. K. M. S. Islam, and P. Chiou. 2011. A skew-normal approximation of the distribution of aggregate claims. J. Probability Stat. Sci., 9, 93–104.MathSciNetGoogle Scholar
  13. David, H. A., and H. N. Nagaraja. 2003. Order statistics, 3rd ed. Hoboken, NJ, Wiley.CrossRefGoogle Scholar
  14. Debrabant, B. 2008. Point processes with a generalized order statistic property. Berlin, Logos.zbMATHGoogle Scholar
  15. Deffner, A., and E. Haeusler. 1985. A characterization of order statistic point processes that are mixed Poisson processes and mixed sample processes simultaneously. J. Appl. Probability, 22, 314–323.MathSciNetCrossRefGoogle Scholar
  16. Denuit, M., J. Dhaene, M. Goovaerts, and R. Kaas. 2005. Actuarial theory for dependent risks: Measures, orders and models. Chichester, UK: Wiley.CrossRefGoogle Scholar
  17. Dickson, D. C. M. 2005. Insurance risk and ruin. Cambridge, UK, Cambridge University Press.CrossRefGoogle Scholar
  18. Embrechts, P., C. Klüppelberg, and T. Mikosch. 1997. Modelling extremal events: For insurance and finance. Berlin, Springer.CrossRefGoogle Scholar
  19. Feigin, P. D. 1979. On the characterization of point processes with the order statistic property. J. Appl. Probability, 16, 297–304.MathSciNetCrossRefGoogle Scholar
  20. Garrido, J., and Y. Lu. 2004. On double periodic non-homogeneous Poisson processes. Bull. Assoc. Swiss Actuaries, 2, 195–212.MathSciNetzbMATHGoogle Scholar
  21. Grandell, J. 1997. Mixed Poisson processes. London, UK, Chapman and Hall.CrossRefGoogle Scholar
  22. Huang, W. J. 1990. On the characterization of point processes with the exchangeable and Markov properties. Sankhyā Ser. A, 52, 16–27.MathSciNetzbMATHGoogle Scholar
  23. Huang, W. J., and J. M. Shoung. 1994. On a study of some properties of point processes. Sankhyā Ser. A, 56, 67–76.MathSciNetzbMATHGoogle Scholar
  24. Huang, W. J., and J. C. Su. 1999. On certain problems involving order statisticsa unified approach through order statistics property of point processes. Sankhyā Ser. A, 61, 36–49.MathSciNetzbMATHGoogle Scholar
  25. Kallenberg, O. 1976. Random measures. London, UK, Academic Press.zbMATHGoogle Scholar
  26. Klugman, S. A., H. H. Panjer, and G. E. Willmot. 2008. Loss models: From data to decisions. 3rd ed. Hoboken, NJ, Wiley.CrossRefGoogle Scholar
  27. Léveillé, G., J. Garrido, and Y. F. Wang. 2010. Moment generating functions of compound renewal sums with discounted claims. Scand. Actuarial J., 3, 165–184.MathSciNetCrossRefGoogle Scholar
  28. Li, S. 2008. Discussion on “On the Laplace transform of the aggregate discounted claims with Markovian arrivals.” North Am. Actuarial J., 4, 443–445.CrossRefGoogle Scholar
  29. Liberman, U. 1985. An order statistic characterization of the Poisson renewal process. J. Appl. Probability, 22, 717–722.MathSciNetCrossRefGoogle Scholar
  30. Lu, Y., and J. Garrido, 2005. Doubly periodic non-homogeneous Poisson models for hurricane data. Stat. Methodol., 2, 17–35.MathSciNetCrossRefGoogle Scholar
  31. Lu, Y., and J. Garrido. 2006. Regime-switching periodic non-homogeneous Poisson processes. North Am. Actuarial J., 10 (4), 235–248.MathSciNetCrossRefGoogle Scholar
  32. McNeil, A. J., R. Frey, and P. Embrechts. 2005. Quantitative risk management: Concepts, techniques, and tools. Princeton, NJ, Princeton University Press.zbMATHGoogle Scholar
  33. Nawrotzki, K. 1962. Ein Grenzwertsatz für homogene zufällige Punktfolgen (Verallgemeinerung eines Satzes von A. Rényi). Math. Nachricht., 24, 201–217CrossRefGoogle Scholar
  34. Nelsen, R. B. 2006. An introduction to copulas, 2nd ed. New York, Springer.zbMATHGoogle Scholar
  35. Parzen, E. 1962. Stochastic processes. San Francisco, CA, Holden-Day.zbMATHGoogle Scholar
  36. Puri, P. S. 1982. On the characterization of point processes with the order statistic property without the moment condition. J. Appl. Probability, 19, 39–51.MathSciNetCrossRefGoogle Scholar
  37. Ren, J. 2008. On the Laplace transform of the aggregate discounted claims with Markovian arrivals. North Am. Actuarial J., 2, 198–207.MathSciNetCrossRefGoogle Scholar
  38. Rolski, T., H. Schmidli, V. Schmidt, and J. Teugels. 1999. Stochastic processes for insurance and finance. Chichester, UK, Wiley.CrossRefGoogle Scholar
  39. Shaked, M., F. Spizzichino, and F. Suter. 2004. Uniform order statistics property and l -spherical densities. Probability Eng. Informational Sci., 18, 275–297.MathSciNetzbMATHGoogle Scholar
  40. Teugels, J. L., and P. Vynckier. 1996. The structure distribution in a mixed Poisson process. J. Appl. Math. Stochastic Anal., 9, 489–496.MathSciNetCrossRefGoogle Scholar
  41. Westcott, M. 1973. Some remarks on a property of the Poisson process. Sankhyā Ser. A, 35, 29–34.MathSciNetzbMATHGoogle Scholar
  42. Willmot, G. E. 1989. The total claims distribution under inflationary conditions. Scand. Actuarial J., 1989, 1–12.MathSciNetCrossRefGoogle Scholar
  43. Young, V. R. 2004. Premium principles. In Encyclopedia of actuarial science, ed. J. Teugels and B. Sundt, 1322–1331. New York, Wiley.Google Scholar

Copyright information

© Grace Scientific Publishing 2012

Authors and Affiliations

  1. 1.Department of Statistical and Actuarial SciencesUniversity of Western OntarioLondonCanada

Personalised recommendations