Journal of Statistical Theory and Practice

, Volume 6, Issue 2, pp 334–343 | Cite as

Zero-Inflated Power Series Joint Model to Analyze Count Data with Missing Responses

  • E. Bahrami SamaniEmail author
  • M. Ganjali
  • Y. Amirian


A zero-inflated power series (ZIPS) joint model for count data with excess zeros and missing responses is presented. A full likelihood-based approach is implemented to obtain maximum likelihood estimates of the model parameters. The purpose of this article is to propose the mixed SEM and EM algorithms (M-SEM-EM algorithm) for parameter estimation in the likelihood function. To illustrate the utility of the proposed model, a large data set excerpted from the British Household Panel Survey (BHPS) is analyzed.

AMS Subject Classification



EM algorithm; Excess zeros Generalized linear mixed model Missing Responses Stochastic EM algorithm Zero-inflated model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akaike, H. 1973. Information theory and an extension of the maximum likelihood principle. In Proceedings of the 2nd International Symposium on Information Theory, ed. B. Petrov and F. Csaki, 267–281, Budapest, Academiai Kiado.Google Scholar
  2. Diggle, P. J., and M. G. Kenward. 1994. Informative drop-out in longitudinal data analysis. J. Appl. Stat., 43, 49–93.CrossRefGoogle Scholar
  3. Gelman, A., and D. Rubin. 1992. Inference from iterative simulation using multiple sequences. Stat. Sci., 7, 457–511.CrossRefGoogle Scholar
  4. Gupta, P. L., R. C. Gupta, and R. C. Tripathi. 1996. Analysis of zero-adjusted count data. Comput. Stat. Data Anal. 23, 207–218.CrossRefGoogle Scholar
  5. Gupta, P. L., R. C. Gupta, and R. C. Tripathi. 2004. Score test for zero inflated generalized Poisson regression model. Commun. Stat. Theory Methods 33(1), 47–64.CrossRefGoogle Scholar
  6. Kale, B. K. 1998. Optimal estimating equations for discrete data with higher frequencies at a point. J. Indian Stat. Assoc., 36, 125–136.MathSciNetGoogle Scholar
  7. Kale, B. K., and K. Muralidharan. 2000. Optimal estimating equations in mixture distributions accommodating instantaneous or early failures. J. Indian Stat. Assoc., 38, 317–329.MathSciNetGoogle Scholar
  8. Kullback, S., and R. A. Leibler. 1951. On information and sufficiency. Ann. Math. Stat., 22, 79–86.MathSciNetCrossRefGoogle Scholar
  9. Lambert, D. 1992. Zero-inflated Poisson regression, with an application to defects in manufacturing. Technometrics, 34, 1–14.CrossRefGoogle Scholar
  10. Little, R. J., and D. Rubin. 2002. Statistical analysis with missing data, 2nd ed. New York, NY, Wiley.CrossRefGoogle Scholar
  11. Min, Y. Y., and A. Agresti. 2005. Random effect models for repeated measures of zero-inflated count data. Stat. Modeling, 5(1), 1–19.MathSciNetCrossRefGoogle Scholar
  12. Murat, M., and D. Szynal. 2003. Moments of certain deformed probability distributions. Commun. Stat. Theory Methods, 32(2), 291–313.MathSciNetCrossRefGoogle Scholar
  13. Patil, M. K., and D. T. Shirke. 2007. Testing parameter of the power series distribution of a zero inflated power series model. Stat. Methodol., 4, 393–406.MathSciNetCrossRefGoogle Scholar
  14. Rubin, D. B. 1976. Inference and missing data. Biometrika, 82, 669–710.MathSciNetGoogle Scholar
  15. Van den Brock, J. 1995. A score test for zero inflation in a Poisson distribution. Biometrics, 51(2), 738–743.MathSciNetCrossRefGoogle Scholar
  16. Xie, M., B. He, and T. N. Goh. 2001. Zero-inflated Poisson model in statistical process control. Comput. Stat. Data Anal., 38, 191–201.MathSciNetCrossRefGoogle Scholar
  17. Xue-Dong, C., and F. Ying-Zi. 2011. Model selection for zero-inflated regression with missing covariates. Comput. Stat. Data Anal., 55(1), 765–773.MathSciNetCrossRefGoogle Scholar
  18. Yip, P. 1988. Inference about the mean of a Poisson distribution in the presence of a nuisance parameter. Austr. J. Stat., 30, 299–306.MathSciNetCrossRefGoogle Scholar

Copyright information

© Grace Scientific Publishing 2011

Authors and Affiliations

  1. 1.Department of Statistics, School of Mathematical SciencesShahid Beheshti UniversityEvin, TehranIran

Personalised recommendations