Advertisement

Journal of Statistical Theory and Practice

, Volume 6, Issue 2, pp 315–333 | Cite as

The Least-Squares Criteria of the Random Coefficient Dynamic Regression Model

  • Autcha Araveeporn
Article

Abstract

The random coefficient dynamic regression (RCDR) model develops from random coefficient autoregressive (RCA) model and autoregressive (AR) model. The RCDR model is considered by adding exogenous variables. In this article, the concept of the least-squares (LS) criterion is used to estimate the parameter on the RCDR model. Simulation results have shown that the proposed coefficient of the AR model provided asymptotically unbiased estimates nearly for most of the six data-generating models. The RCDR model is then applied to a series of daily observations of the exchange rate of Baht/GBP and Baht/EUR to illustrate the methodology. The predictions of LS criteria are used with those obtained on 20 hold-out future values of withheld observations.

AMS Subject Classification

62F10 62F03 

Key-words

Autoregressive Least-squares criterion Random coefficient dynamic regression 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bollerslev, T. 1986. Generalized autoregressive conditional heteroscedasticity. J. Econometrics, 31, 307–327.MathSciNetCrossRefGoogle Scholar
  2. Chan, K. S. 1993. Consistency and limiting distribution of the least squares estimator of threshold autoregressive model. Ann. Stat., 21, 520–533.MathSciNetCrossRefGoogle Scholar
  3. Dickey, D. A., and W. A. Fuller. 1979, Distribution of the estimates for autoregressive time series with a unit root. J. Am. Stat. Assoc., 74, 427–431.MATHGoogle Scholar
  4. Engle, R. F. 1982. Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica, 50, 987–1007.MathSciNetCrossRefGoogle Scholar
  5. Hwang, C., and B. P. Carlin. 1998. Parameter estimation for generalized random coefficient autoregressive process. J. Stat. Plan. Inference, 68, 323–337.CrossRefGoogle Scholar
  6. Nicholls, D. F., and B. G. Quinn. 1982. Random coefficient autoregressive models: An introduction., New York, NY, Springer-Verlag.CrossRefGoogle Scholar
  7. Phillips, P. C. B. 1987. Time series regression with a unit roots. Econometrica, 55, 227–301.MathSciNetCrossRefGoogle Scholar
  8. Roh, T. H. 2007. Forecasting the volatility of stock price index. Expert Systems with Applications, 33, 916–922.CrossRefGoogle Scholar
  9. Thavaneswaran, A., S. S. Appadoo, and S. Peiris. 2005. Forecasting volatility. Stat. Prob. Lett., 75, 1–10.MathSciNetCrossRefGoogle Scholar
  10. Tong, H. 1983. Threshold models in non-linear time series analysis. Lecture Notes in Statistics, 21. Berlin, Springer.CrossRefGoogle Scholar
  11. Tsay, R. 1987. Conditional heteroscedastic time series models. J. Am. Stat. Assoc., 82, 590–604.MathSciNetCrossRefGoogle Scholar
  12. Tsay, R. 2005. Analysis of financial time series. New York, NY, Wiley-Interscience.CrossRefGoogle Scholar

Copyright information

© Grace Scientific Publishing 2011

Authors and Affiliations

  1. 1.Department of Applied StatisticsFaculty of Science, King Mongkut’s Institute of Technology LadkrabangBangkokThailand

Personalised recommendations