Advertisement

Journal of Statistical Theory and Practice

, Volume 6, Issue 2, pp 251–259 | Cite as

Deriving Tests of the Semi—linear Regression Model Using the Density Function of a Maximal Invariant

  • Jahar L. Bhowmik
  • Maxwell L. King
Article

Abstract

In the context of a general regression model in which some regression coefficients are of interest and others are purely nuisance parameters, we define the density function of a maximal invariant statistic with the aim of testing for the inclusion of regressors (either linear or non-linear) in linear or semi-linear models. This allows the construction of the locally best invariant test, which in two important cases is equivalent to the one-sided t test for a regression coefficient in an artificial linear regression model.We consider a specific semi-linear model to apply the constructed test.

AMS Subject Classification

91G70 62H10 

Keywords

Invariance Linear regression model Locally best invariant test Nonlinear regression model Nuisance parameters t-test 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bhowmik, J. L., and M. L. King. 2007. Maximal invariant likelihood based testing of semilinear models. Stat. Papers, 48, 357–383.CrossRefGoogle Scholar
  2. Bhowmik, J. L., and M. L. King. 2009. Parameter estimation in semi-linear models using a maximal invariant likelihood function. J. Stat. Plan. Inference, 139, 1276–1285.MathSciNetCrossRefGoogle Scholar
  3. Ferguson, T. S., 1967. Mathematical statistics: A decision theoretic approach. New York, NY, Academic Press.MATHGoogle Scholar
  4. Kalbfleisch, J. D., and D. A. Sprott. 1970. Application of likelihood methods to models involving large numbers of parameters. J. R. Stat. Soc. B, 32, 175–208.MathSciNetMATHGoogle Scholar
  5. King, M. L., and G. H. Hillier. 1985. Locally best invariant tests of the error covariance matrix of the linear regression model. J. R. Stat. Soc. Ser. B, 47, 98–102.MATHGoogle Scholar
  6. King, M. L., and T. S. Shively. 1993. Locally optimal testing when a nuisance parameter is present only under the alternative. Rev. Econ. Stat., 75, 1–7.CrossRefGoogle Scholar
  7. King, M. L., and P. Wu. 1997. Locally optimal one-sided tests for multiparameter hypothesis. Econometrics Rev., 16, 131–156.CrossRefGoogle Scholar
  8. Lehmann, E. L. 1959a. Optimum invariant tests. Ann. Math. Stat., 30, 881–884.MathSciNetCrossRefGoogle Scholar
  9. Lehmann, E. L. 1959b. Testing statistical hypotheses. New York, NY, Wiley.MATHGoogle Scholar
  10. Lehmann, E. L. 1986. Testing statistical hypotheses, 2nd ed. New York, NY, Wiley.CrossRefGoogle Scholar
  11. Wu, P., and M. L. King. 1994. One-sided hypothesis testing in econometrics: A survey. Pakistan J. Stat., 10, 261–300.MathSciNetMATHGoogle Scholar

Copyright information

© Grace Scientific Publishing 2012

Authors and Affiliations

  1. 1.Faculty of Life and Social SciencesSwinburne University of TechnologyMelbourneAustralia
  2. 2.Department of Econometrics and Business StatisticsMonash UniversityMelbourneAustralia

Personalised recommendations