Journal of Statistical Theory and Practice

, Volume 6, Issue 1, pp 139–146

# Transversals in m × n Arrays

Article

## Abstract

An m by n array consists of mn cells in m rows and n columns, where 2 < m < n. A partial transversal in an m by n array is a set of m cells, one from each row and no two from the same column. A transversal in an m by n array is a partial transversal in which m symbols are distinct. Define L(m, n) as the largest integer such that if each symbol in an m by n array appears at most L(m, n) times, then the array must have a transversal. In this article, we first obtain a better lower bound of L(tm, n) by using a probabilistic method and then find L(m, n) for certain positive integers m and n.

05B15

## Keywords

Transversal m × n arrays

## References

1. Akbari, S., O. Etesami, H. Mahini, M. Mahmoody, and A. Sharifi. 2006. Transversals in long rectangular arrays. Discrete Math., 306, 3011–3013.
2. Balasubramanian, K. 1990. On transversals of Latin squares. Linear Algebra Appl., 131, 125–129.
3. Drake, D. A. 1977. Maximal sets of Latin squares and partial transversal. J. Stat. Plan. Inference, 1, 143–149.
4. Erd˝os, P., and J. Spencer. 1991. Lopsided Lovász local lemma and Latin transversals. Discrete Appl. Math., 30, 151–154.
5. Fu, H.-L., S.-C. Lin, and C.-M. Fu. 2002. The length of a partial transversal in a Latin square. J. Combin. Math. Combin. Comput. 43, 57–64.
6. Koksma, K. K. 1969. A lower bound for the order of a partial transversal in a Latin square. J. Combin. Theory Ser. A 7, 94–95.
7. Park, E. T. 1989. Personal Correspondence.Google Scholar
8. Ryser, H. J. 1967. Neuere Problem in der Kombinatorik, in Vorträge über Kombinatorik. Oberwohlfach, 69–61.Google Scholar
9. Stein, S. K., and S. Szabó. 2006. The number of distinct symbols in sections of rectangular arrays. Discrete Math., 306, 254–261.
10. Stinson, D. R. 2004. Combinatorial designs constructions and analysis. New York, Springer.
11. Shor, P. W. 1982. A lower bound of the length of a partial transversal in a Latin square. J. Combin. Theory Ser. A, 33, 1–8.
12. Hatami, P., and W. Shor. 2008. A lower bound for the length of a partial transversal in a Latin square, revised version. J. Combin. Theory Ser. A, 115(7), 1103–1113.
13. Woolbright, D. E. 1978. An n by n Latin square has a transversal with at least n − √n. J. Combin. Theory Ser. A, 24, 235–237.