Advertisement

Journal of Statistical Theory and Practice

, Volume 5, Issue 4, pp 627–648 | Cite as

Construction of Efficient Mixed-Level k-circulant Supersaturated Designs

Article

Abstract

An algorithm to construct efficient balanced mixed-level k-circulant supersaturated designs with m factors and n runs is presented in this article. The algorithm generates efficient mixed-level k-circulant supersaturated designs very fast. Using the proposed algorithm many mixed-level, balanced supersaturated designs are constructed and catalogued. A list of many optimal and near optimal, mixed-level supersaturated designs is also provided for m ∤ 60.

AMS Subject Classification

62K15 62K05 62K99 

Key-words

Supersaturated designs Mixed-level k-circulant Algorithm Aliased Efficiency 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ai, M.Y., Fang, K.T., He, S.Y., 2007. (Eχ2)-optimal mixed-level supersaturated designs. Journal of Statistical Planning and Inference, 137, 306–316.MathSciNetCrossRefGoogle Scholar
  2. Booth, K.H.V., Cox, D.R., 1962. Some systematic supersaturated designs. Technometrics, 4(4), 489–495.MathSciNetCrossRefGoogle Scholar
  3. Chen, J., Liu, M.Q., 2008. Optimal mixed-level k-circulant supersaturated designs. Journal of Statistical Planning and Inference, 138, 4151–4157.MathSciNetCrossRefGoogle Scholar
  4. Fang, K.T., Ge, G.N., Liu, M.Q., Qin, H., 2003a. Construction of minimum generalized aberration designs. Metrika, 57, 37–50.MathSciNetCrossRefGoogle Scholar
  5. Fang, K.T., Lin, D.K.J., Liu, M.Q., 2003b. Optimal mixed-level supersaturated design. Metrika, 58, 279–291.MathSciNetCrossRefGoogle Scholar
  6. Fang, K.T., Ge, G.N., Liu, M.Q., 2004a. Construction of optimal supersaturated designs by the packing method. Science China Series A, 47, 128–143.MathSciNetCrossRefGoogle Scholar
  7. Fang, K.T., Ge, G.N., Liu, M.Q., Qin, H., 2004b. Construction of uniform designs via super-simple resolvable t-designs. Utilitas Mathematica, 66, 15–32.MathSciNetMATHGoogle Scholar
  8. Fang, K.T., Ge, G.N., Liu, M.Q., Qin, H., 2004c. Combinatorial constructions for optimal supersaturated designs. Discrete Mathematics, 279, 191–202.MathSciNetCrossRefGoogle Scholar
  9. Georgiou, S., Koukouvinos, C., 2006. Multi-level k-circulant supersaturated designs. Metrika, 64, 209–220.MathSciNetCrossRefGoogle Scholar
  10. Georgiou, S., Koukouvinos, C., Mantas, P., 2006. On multi-level supersaturated designs. Journal of Statistical Planning and Inference, 136, 2805–2819.MathSciNetCrossRefGoogle Scholar
  11. Gupta, S., Hisano, K., Morales, L.B., 2010a. Optimal k-circulant supersaturated designs. Journal of Statistical Planning and Inference, Article in press. (paper seen courtesy Journal editorial board).Google Scholar
  12. Gupta, V.K., Singh, P., Kole, B., Parsad, R., 2010b. Computer aided construction of efficient multi-level supersaturated designs. Jouranl of Statistical Theory and Practice, 4(2), 221–231.MathSciNetCrossRefGoogle Scholar
  13. Hickernell, F.J., Liu, M.Q., 2002. Uniform designs limit aliasing. Biometrika, 89, 893–904.MathSciNetCrossRefGoogle Scholar
  14. Kole, B., Gangwani, J., Gupta, V.K., Parsad, R. 2010. Two-level supersaturated designs: a review. Jouranl of Statistical Theory and Practice, 4(4), 589–608.MathSciNetCrossRefGoogle Scholar
  15. Koukouvinos, C., Mantas, P., 2005. Construction of some E(f NOD) optimal mixed-level supersaturated designs. Statistics & Probability Letters, 74, 312–321.MathSciNetCrossRefGoogle Scholar
  16. Koukouvinos, C., Mylona, K., Simos, D.E., 2007. Exploring k-circulant supersaturated designs via genetic algorithms. Computational Statistics and Data Analysis, 51, 2958–2968.MathSciNetCrossRefGoogle Scholar
  17. Li, P.F., Liu, M.Q., Zhang, R.C., 2004. Some theory and the construction of mixed-level supersaturated designs. Statistics & Probability Letters, 69, 105–116.MathSciNetCrossRefGoogle Scholar
  18. Lin, D.K.J., 1991. Systematic supersaturated designs. Working paper No. 264, College of Business Administration, University of Tennessee.MATHGoogle Scholar
  19. Lin, D.K.J., 1993. A new class of supersaturated designs. Technometrics, 35, 28–31.CrossRefGoogle Scholar
  20. Liu, M.Q., Fang, K.T., Hickernell, F.J., 2006. Connections among different criteria for asymmetrical fractional factorial designs. Statistica Sinica, 16, 1285–1297.MathSciNetMATHGoogle Scholar
  21. Liu, M.Q., Hickernell, F.J., 2002. E(s)2-optimality and minimum discrepancy in 2-level supersaturated designs. Statistica Sinica, 12, 931–939.MathSciNetMATHGoogle Scholar
  22. Liu, M.Q., Lin, D.K.J., 2009. Construction of optimal mixed-level supersaturated designs. Statistica Sinica, 19, 197–211.MathSciNetMATHGoogle Scholar
  23. Liu, Y.F., Dean, A., 2004. k-circulant supersaturated designs. Technometrics, 46, 32–43.MathSciNetCrossRefGoogle Scholar
  24. Liu, Y.K., Liu, M.Q., Zhang, R.C., 2007. Construction of multi-level supersaturated design via Kronecker product. Journal of Statistical Planning and Inference, 137, 2984–2992.MathSciNetCrossRefGoogle Scholar
  25. Nguyen, N.K., 1996. An algorithmic approach to constructing supersaturated designs. Technometrics, 38, 205–209.MathSciNetCrossRefGoogle Scholar
  26. R Development Core Team, 2011. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. URL http://www.R-project.org Google Scholar
  27. Satterthwaite, F., 1959. Random balance experimentation (with discussion). Technometrics, 1, 111–137.MathSciNetCrossRefGoogle Scholar
  28. Wu, C.F.J., 1993. Construction of supersaturated designs through partially aliased interactions. Biometrika, 80, 661–669.MathSciNetCrossRefGoogle Scholar
  29. Xu, H., 2003. Minimum moment aberration for nonregular designs and supersaturated designs. Statistica Sinica, 13, 691–708.MathSciNetMATHGoogle Scholar
  30. Xu, H., Wu, C.F.J., 2001. Generalized minimum aberration for asymmetrical fractional factorial designs. Annals of Statistics, 29, 1066–1077.MathSciNetCrossRefGoogle Scholar
  31. Xu, H., Wu, C.F.J., 2005. Construction of optimal multi-level supersaturated designs. Annals of Statistics, 33, 2811–2836.MathSciNetCrossRefGoogle Scholar
  32. Yamada, S., Matsui, M., Matsui, T., Lin, D.K.J., Tahashi, T., 2006. A general construction method for mixed-level supersaturated design. Computational Statistics and Data Analysis, 50, 254–265.MathSciNetCrossRefGoogle Scholar
  33. Zhang, Q.Z., Zhang, R.C., Liu, M.Q., 2007. A method for screening active effects in supersaturated designs. Journal of Statistical Planning and Inference, 137, 2068–2079.MathSciNetCrossRefGoogle Scholar

Copyright information

© Grace Scientific Publishing 2011

Authors and Affiliations

  1. 1.Indian Agricultural Statistics Research InstituteLibrary AvenuePusa, New DelhiIndia

Personalised recommendations