Journal of Statistical Theory and Practice

, Volume 5, Issue 3, pp 497–513 | Cite as

A Green Proof of Fatou’s Theorem

  • Michael D. O’NeillEmail author


This paper is an exposition of some applications of Stochastic Processes to boundary behavior problems for harmonic functions. As an illustration, we give a proof of Fatou’s theorem in simply connected plane domains which is probabilistic and does not use the Riemann mapping theorem. The paper closes with some remarks on further related work and open questions.

AMS Subject Classification

31A20 60J45 


Stochastic methods in potential theory Fatou’s theorem Boundary behaviour of harmonic functions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arsove, M., 1972. Green’s measure and harmonic measure. Michigan Math. J., 19, 275–276.MathSciNetCrossRefGoogle Scholar
  2. Bass, R., 1995. Probabilistic Techniques in Analysis. Springer-Verlag, New York.zbMATHGoogle Scholar
  3. Betsakos, D., 2001. Geometric theorems and problems for harmonic measure. Rocky Mountain J. Math., 31, 773–795.MathSciNetCrossRefGoogle Scholar
  4. Beurling, A., 1933. Études sur un problème de majoration. Thèse, Uppsala.zbMATHGoogle Scholar
  5. Brelot, M., Choquet, G., 1951. Espaces et lignes de Green (in French). Ann. Inst. Fourier Grenoble, 3, 199–263.MathSciNetCrossRefGoogle Scholar
  6. Burkholder, D., Gundy, R., Silverstein, M., 1971. A maximal function characterization of the class Hp. Trans. Amer. Math. Soc., 157, 137–153.MathSciNetzbMATHGoogle Scholar
  7. Carleson, L., 1962. On the existence of boundary values for harmonic functions in several variables. Ark. Mat., 4, 393–399.MathSciNetCrossRefGoogle Scholar
  8. Dahlberg, B., 1977. Estimates of harmonic measure. Arch. Rational Mech. Anal., 65(3), 275–288.MathSciNetCrossRefGoogle Scholar
  9. Doob, J., 1954. Semimartingales and subharmonic functions. Trans. Amer. Math. Soc., 77, 86–121.MathSciNetCrossRefGoogle Scholar
  10. Doob, J., 1984. Classical Potential Theory and Its Probabilistic Counterpart. Springer Verlag, New York.CrossRefGoogle Scholar
  11. Garnett, J., Marshall, D., 2005. Harmonic measure. Cambridge University Press.CrossRefGoogle Scholar
  12. Hall, T., 1937. Sur la mesure harmonique de certain ensembles. Arkiv Mat. Astr. Fys., 25 A(28), 1–8.zbMATHGoogle Scholar
  13. Helms, L.L., 1969. Introduction to Potential Theory. John Wiley & Sons, New York.zbMATHGoogle Scholar
  14. Hunt, G., 1957a. Markoff processes and potentials I. Illinois J. Math., 1, 44–93.MathSciNetCrossRefGoogle Scholar
  15. Hunt, G., 1957b. Markoff processes and potentials II. Illinois J. Math., 1, 316–369.MathSciNetCrossRefGoogle Scholar
  16. Hunt, G., 1958. Markoff processes and potentials III. Illinois J. Math., 2, 151–213.MathSciNetCrossRefGoogle Scholar
  17. Jerison, D., Kenig, C., 1982. Boundary behavior of harmonic functions in nontangentially accessible domains. Adv. in Math., 46(1), 80–147.MathSciNetCrossRefGoogle Scholar
  18. Kakutani, S., 1944. Two dimensional Brownian motion and harmonic functions. Proc. Imp. Acad. Japan, 20, 706–714.MathSciNetCrossRefGoogle Scholar
  19. McMillan, J.E., 1969. Boundary behavior of a conformal mapping. Acta. Math., 123, 43–67.MathSciNetCrossRefGoogle Scholar
  20. Nevanlinna, R., 1944. Eindeutige analytische Funktionen. Springer-Verlag, Berlin.zbMATHGoogle Scholar
  21. Øksendal, B., 1983. Projection estimates for harmonic measure. Ark. Mat., 21(2), 191–203.MathSciNetCrossRefGoogle Scholar
  22. O’Neill, M., Preprint. A geometric and stochastic proof of the twist point theorem. To appear in Publicacions Matematiques.Google Scholar
  23. Port, S.C., Stone, C.J., 1978. Brownian Motion and Classical Potential Theory. Academic Press, New York.zbMATHGoogle Scholar
  24. Sharpe, M., 1986. S. Kakutani’s work on Brownian motion. In Contemporary Mathematicians-Selected Works of S. Kakutani, Kallman, R. (Editor), 2, 397–401. Birkhauser, Basel.Google Scholar
  25. Tsirelson, B., 1997. Triple points: from non-Brownian filtrations to harmonic measures. Geom. Funct. Anal., 7(6), 1096–1142.MathSciNetCrossRefGoogle Scholar
  26. Wiener, N., 1924. The Dirichlet problem. J. Math.Phys., 3, 127–146CrossRefGoogle Scholar

Copyright information

© Grace Scientific Publishing 2011

Authors and Affiliations

  1. 1.Department of MathematicsClaremont McKenna CollegeClaremontUSA

Personalised recommendations