Journal of Statistical Theory and Practice

, Volume 5, Issue 3, pp 397–411 | Cite as

Overview of Utility-Based Valuation

  • David GermanEmail author


We review the utility-based valuation method for pricing derivative securities in incomplete markets. In particular, we review the practical approach to the utility-based pricing by the means of computing the first order expansion of marginal utility-based prices with respect to a small number of random endowments.

AMS Subject Classification

91B16 91B25 91G20 


Utility-based prices Price corrections Risk-tolerance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Davis, M.H.A., 1997. Option pricing in incomplete markets. In Mathematics of Derivative Securities (Cambridge, 1995), Volume 15 of Publ. Newton Inst., pp. 216–226, Cambridge Univ. Press.Google Scholar
  2. Delbaen, F., Schachermayer, W., 1994. A general version of the fundamental theorem of asset pricing. Mathematische Annalen, 300(3), 463–520.MathSciNetCrossRefGoogle Scholar
  3. Delbaen, F., Schachermayer, W., 1997 The Banach space of workable contingent claims in arbitrage theory. Annales de l’Institut Henri Poincaré. Probabilités et Statistiques, 33(1), 113–144.MathSciNetCrossRefGoogle Scholar
  4. Delbaen, F., Schachermayer, W., 1998. The fundamental theorem of asset pricing for unbounded stochastic processes. Mathematische Annalen, 312(2), 215–250.MathSciNetCrossRefGoogle Scholar
  5. German, D., 2011. Corrections to the prices of derivatives due to market incompleteness. Applied Mathematical Finance, 18(2), 155–187.MathSciNetCrossRefGoogle Scholar
  6. Henderson, V., 2002. Valuation of claims on nontraded assets using utility maximization. Mathematical Finance, 12(4), 351–373.MathSciNetCrossRefGoogle Scholar
  7. Hugonnier, J., Kramkov, D., 2004. Optimal investment with random endowments in incomplete markets. The Annals of Applied Probability, 14(2), 845–864.MathSciNetCrossRefGoogle Scholar
  8. Hugonnier, J., Kramkov, D., Schachermayer, W., 2005. On utility-based pricing of contingent claims in incomplete markets. Mathematical Finance, 15(2), 203–212.MathSciNetCrossRefGoogle Scholar
  9. Kramkov, D., Schachermayer, W., 1999. The asymptotic elasticity of utility functions and optimal investment in incomplete markets. The Annals of Applied Probability, 9(3), 904–950.MathSciNetCrossRefGoogle Scholar
  10. Kramkov, D., Sîrbu, M., 2006a. On the two-times differentiability of the value functions in the problem of optimal investment in incomplete markets. The Annals of Applied Probability, 16(3), 1352–1384.MathSciNetCrossRefGoogle Scholar
  11. Kramkov, D., Sîrbu, M., 2006b. Sensitivity analysis of utility-based prices and risk-tolerance wealth processes. The Annals of Applied Probability, 16(4), 2140–2194.MathSciNetCrossRefGoogle Scholar
  12. Musiela, M., Zariphopoulou, T., 2004. An example of indifference prices under exponential preferences. Finance and Stochastics, 8(2), 229–239.MathSciNetCrossRefGoogle Scholar
  13. Rubinstein, M., 1976. The valuation of uncertain income streams and the pricing of options. Bell Journal of Economics, 7, 407–425MathSciNetCrossRefGoogle Scholar

Copyright information

© Grace Scientific Publishing 2011

Authors and Affiliations

  1. 1.Department of MathematicsClaremont McKenna CollegeClaremontUSA

Personalised recommendations