Journal of Statistical Theory and Practice

, Volume 3, Issue 3, pp 537–541 | Cite as

Introduction to Modern Goodness of Fit Methods

  • J. C. W. RaynerEmail author
  • O. Thas
  • D. J. Best


We set the context for this special issue on modern goodness of fit methods, or modern methods of assessing statistical models.


Empirical distribution function tests Exponential distribution Generalized two-sided power distribution Hypothesis testing Logistic distribution Model selection Negative binomial distribution Nonparametric regression Score and generalised score tests Smooth tests for location-scale families Tests for ARCH assumptions in financial time series Circular von Mises distribution 

AMS Subject Classification

62F03 62G07 62G10 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Claeskens, G., Hjort, N., 2004. Goodness of fit via non-parametric likelihood ratios. Scandinavian Journal of Statistics, 31, 487–513.MathSciNetCrossRefGoogle Scholar
  2. D’Agostino, R.B., Stephens, M.A., 1986. Goodness-of-Fit Techniques. Marcel Dekker, New York.zbMATHGoogle Scholar
  3. Gürtler, N., Henze, N., 2000. Goodness-of-fit tests for the Cauchy distribution based on the empirical characteristic function. Annals of the Institute of Statistical Mathematics, 52, 267–286.MathSciNetCrossRefGoogle Scholar
  4. Hart, J., 1997. Nonparametric Smoothing and Lack-of-Fit Tests. Springer, Berlin.CrossRefGoogle Scholar
  5. Henze, N., Klar, B., 1996. Properly rescaled components of smooth tests of fit are diagnostic. Austral. J. Statist., 38, 61–74.MathSciNetCrossRefGoogle Scholar
  6. Henze, N., Meintanis, S., 2002. Tests of fit for exponentiality based on the empirical Laplace transformation. Statistics, 36, 147–161.MathSciNetCrossRefGoogle Scholar
  7. Ledwina, T., 1994. Data-driven version of Neyman’s smooth test of fit. J. Amer. Statist. Assoc. 89, 1000–1005.MathSciNetCrossRefGoogle Scholar
  8. Meintanis, S., 2004. Goodness-of-fit tests for the logistic distribution based on empirical transforms. Sankhya, Series B, 66, 306–326MathSciNetzbMATHGoogle Scholar
  9. Neyman, J., 1937. ‘Smooth’ test for goodness of fit. Skand. Aktuarietidskr., 20, 150–199.zbMATHGoogle Scholar
  10. Pearson, K., 1900. On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can reasonably be supposed to have arisen from random sampling. Philos. Mag., 5th ser., 50, 157–175.CrossRefGoogle Scholar
  11. Rayner, J.C.W., Best, D.J., 1989. Smooth Tests of Goodness of Fit. Oxford University Press, New York.zbMATHGoogle Scholar
  12. Rayner, J.C.W., Thas, O., Best, D.J., 2009. Smooth Tests of Goodness of Fit: Using R (2nd edition). Wiley, Singapore.CrossRefGoogle Scholar

Copyright information

© Grace Scientific Publishing 2009

Authors and Affiliations

  1. 1.School of Mathematical and Physical SciencesUniversity of NewcastleAustralia
  2. 2.Department of Applied Mathematics, Biometrics and Process ControlGhent UniversityGentBelgium

Personalised recommendations