Journal of Statistical Theory and Practice

, Volume 1, Issue 3–4, pp 479–487 | Cite as

Euler on Statistics

  • S. MorgenthalerEmail author
  • P. R. Parthasarathy


This paper gives a short review of Euler’s work in the statistical sciences. During Euler’s lifetime there was a strong interest in the practical use of mathematical modelling and this increasingly encompassed the calculus of probabilities. In the middle of his life, Euler’s interest was piqued by questions involving games of chance. He also occasionally solved problems in probability theory. At the request of king Frederic II of Prussia, for example, he analysed designs for two state run lotteries. The natural applications of probability and statistics involved such questions of public policies as the prediction of population growth, or the establishment of life tables in order to predict the expenses of insurance schemes for widows and orphans. A few of Eulers texts in these areas are discussed in the paper.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bellhouse, D.R., 1991. “The Genoese lottery”. Stat. Sci., 6, No.2, 141–148.MathSciNetCrossRefGoogle Scholar
  2. Bradley, R.E., 2004. “Euler’s analysis of the Genoese lottery”, Convergence.Google Scholar
  3. Eneström, Gustav, “Verzeichnis der Schriften Leonhard Eulers”, Jahresbericht der Deuts-chen Mathematiker Vereinigung, Ergnzungsband IV, (191013).Google Scholar
  4. Euler, Leonhard, 1753. “Calcul de la probabilité dans le jeu de rencontre,” Mémoires de l’académie de Berlin, 7, 255–270 (E201)Google Scholar
  5. Euler, Leonhard, 1760. “Sur les rentes viageres”, Mémoires de l’Académie royale des sciences et belles-lettres de Berlin, 16, 165–175. (E335)Google Scholar
  6. Euler, Leonhard, 1764. “Sur l’avantage du banquier au jeu de Pharaon”, Mémoires de l’académie de sciences de Berlin, 20, 144–164 (E313)Google Scholar
  7. Euler, Leonhard, 1767. “Sur la probabilité des sequences dans la loterie genoise”. Mémo-ires de l’Académie royale des sciences et belles-lettres de Berlin, 21, 191–230 (E338)Google Scholar
  8. Euler, Leonhard, 1771. “Solution d’une questione tres difficile dans le calcul des probabilités”. Mémoires de l’Académie royale des sciences et belles-lettres de Berlin, 25, 255–302, (E412).Google Scholar
  9. Euler, Leonhard, 1777. “Observationes in praecedentem dissertationem illustris Bernoulli”. Acta. Acad. Sci. Imp. Petrop, 1, 24–33. (E448)Google Scholar
  10. Euler, Leonhard, 1785. “Solutio quarundam quaestionum difficiliorum in calculo probabilis”. Opuscula Analytica, Vol. II, 331–346. (E600)Google Scholar
  11. Euler, Leonhard, 1788 “Eclaircissements sur le mémoire de Mr. De la Grange insere dans le Ve volume des melanges de turior concernant la methode de prendre le milieu entre les resultats de plusiere observations etc.”, Nova acta academiae scientiarum Petropolitanae, 3, 289–297. (E628)Google Scholar
  12. Euler, Leonhard, 1797. “Recherches générales sur la mortalité et la multiplication du genre humain”. Mémoires de l’Académie royale des sciences et belles-lettres de Berlin, 16, 144–164 (E334)Google Scholar
  13. Euler, Leonhard, 1811, “Solution quaestionis curiosae ex doctrina combinationum”, Mémoires de l’académie des sciences de St. Pétersbourg, 3, 57–64. (E738)Google Scholar
  14. Euler, Leonhard, 1862. “Analyse d’un probleme du calcul des probabilites”, Opera Postuma, I, 336–341 (E813)Google Scholar
  15. Euler, Leonhard, 1862. “Reflexions sur une espese singulier de loterie nommée loterie genoise”. Opera postuma, I, 319–335. (E812)Google Scholar
  16. Euler, Leonhard, 1862. “Vera estimatio sortis in ludis”. Opera postuma, I, 315–318. (E811)Google Scholar
  17. Fellmann, E. A., 2007. Leonhard Euler, Birkhäuser, Basel.zbMATHGoogle Scholar
  18. Du Pasquier, Louis Gustave, 1923. “Préface de l’editeur,” in Leonhardi Euleri Opera Omnia, I.7, Birkhäuser, BaselGoogle Scholar
  19. Tarry, G., 1900. “Le problème des 36 officiers (i)”. Comptes Rendus Assoc. Franc. Avanc. Sci., 1, 122–123.zbMATHGoogle Scholar
  20. Tarry, G., 1901. “Le problème des 36 officiers (ii)”. Comptes Rendus Assoc. Franc. Avanc. Sci., 2, 177–203.Google Scholar
  21. Varadarajan, V.S., 2006. Euler Through Time: A New Look at Old Themes, American Mathematical Society.zbMATHGoogle Scholar

Copyright information

© Grace Scientific Publishing 2007

Authors and Affiliations

  1. 1.Swiss Federal Institute of Technology, EPFL-SB/IMALausanneSwitzerland
  2. 2.Department of MathematicsIndian Institute of Technology, MadrasChennaiIndia

Personalised recommendations