Advertisement

Journal of Statistical Theory and Practice

, Volume 1, Issue 3–4, pp 465–477 | Cite as

Optimal Designs in (q-1) Orthogonal Blocks for Darroch And Waller’s Quadratic Mixture Model In q Components

  • M. L. Aggarwal
  • Poonam Singh
  • L. Y. Chan
Article

Abstract

Optimal orthogonal block designs for Scheffé’s quadratic model are discussed by Czitrom(1988, 1989, 1992), Draper et al.(1993), Prescott et al.(1993, 1997), Lewis et al.(1994), Chan and Sandhu (1999), and Ghosh and Liu(1999). In this paper, we construct a class of orthogonal block designs in t=(q-1) blocks for Darroch and Waller’s additive quadratic models in q(≤50) components when q is prime or a prime power and obtain D-, A- and E-optimal designs in this class with the restriction of only two non-zero components. Conditions required for orthogonality are also given.

AMS Subject Classification

Primary 62K05 Secondary 62J99, 52A25 

Keywords

Mixture experiments Process variables Orthogonality Darroch and Waller’s Model D-optimality A-optimality E-optimality 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chan, L. Y., and Sandhu, M. K., 1999. Optimal orthogonal block designs for a quadratic mixture model for three components, Journal of Applied Statistics, 26, 19–34.MathSciNetCrossRefGoogle Scholar
  2. Chan, L. Y., Guan, Y. N. and Zhang C. Q.,1998 a. A-optimal designs for an additive quadratic mixture model, Statistica Sinica, 8, 979–990.MathSciNetMATHGoogle Scholar
  3. Chan, L. Y., Meng, J. H., Jiang, Y. C. and Guan, Y. N.,,1998 b. D-optimal axial designs for quadratic and cubic additive mixture model, Australian and New Zealand Journal of Statistics, 40, 359–371.MathSciNetCrossRefGoogle Scholar
  4. Cornell, J. A., 2002. Experiments with mixtures, Third Edition, Wiley, New YorkCrossRefGoogle Scholar
  5. Czitrom, V., 1988. Mixture experiments with process variables: D-optimal orthogonal experimental designs, Communications in Statistics-Theory and Methods, 17, 105–121.MathSciNetCrossRefGoogle Scholar
  6. Czitrom, V., 1989. Experimental designs for four mixture components with process variables, Communications in Statistics — Theory and Methods, 18, 4561–4581.MathSciNetCrossRefGoogle Scholar
  7. Czitrom, V., 1992. Note on mixture experiments with process variables, Communications in Statistics-Simulation and Computation, 21, 493–498.CrossRefGoogle Scholar
  8. Darroch, J. N. and Waller, J., 1985. Additivity and interactions in three-components experiments with mixtures, Biometrika, 72, 153–163.MathSciNetCrossRefGoogle Scholar
  9. Draper, N. R., Prescott, P., Lewis, S. M, Dean, A. M., John, P. W. M. and Tuck, M. G., 1993. Mixture designs for four components in orthogonal blocks, Technometrics, 35, 268–276.MathSciNetCrossRefGoogle Scholar
  10. Ghosh, S. and Liu, T., 1999. Optimal mixture designs for four components in two orthogonal blocks, Journal of Statistical Planning and Inference, 78, 219–228.MathSciNetCrossRefGoogle Scholar
  11. John, P. W. M., 1984. Experiments with Mixture Involving Process Variables, Technical Report 8, Center for Statistical Sciences, University of Texas, Austin, TX, 1–17.Google Scholar
  12. Lewis, S. M., Dean, A. M., Draper, N. R. and Prescott, P., 1994. Mixture designs for q components in orthogonal blocks. Journal of the Royal Statistical Society, Series B, 56, 457–467.MathSciNetMATHGoogle Scholar
  13. Nigam, A. K., 1970. Block designs for mixture experiments, Annals of Mathematical Statistics, 41, 1861–1869.MathSciNetCrossRefGoogle Scholar
  14. Prescott, P., Draper, N. R., Dean, A. M., Lewis, S. M., 1993. Mixture designs for five components in orthogonal blocks, Journal of Applied Statistics, 20, 105–117.CrossRefGoogle Scholar
  15. Prescott, P., Draper, N. R., Lewis, S. M., and Dean, A. M., 1997. Further properties of mixture designs for five components in orthogonal blocks, Journal of Applied Statistics, 24, 147–156.MathSciNetCrossRefGoogle Scholar
  16. Scheffé, H., 1958. Experiments with Mixtures, Journal of Royal Statistical Society, Series B, 20, 344–360.MathSciNetMATHGoogle Scholar
  17. Scheffé, H., 1963. Simplex-centroid designs for experiments with Mixtures, Journal of Royal Statistical Society, Series B, 25, 235–263.MathSciNetMATHGoogle Scholar

Copyright information

© Grace Scientific Publishing 2007

Authors and Affiliations

  1. 1.Department of Mathematical SciencesThe University of MemphisMemphisUSA
  2. 2.Department of StatisticsUniversity of DelhiDelhiIndia
  3. 3.Department of Industrial and Manufacturing Systems EngineeringUniversity of Hong KongHong Kong

Personalised recommendations