Advertisement

The Cerebellum

, Volume 6, Issue 3, pp 254–267 | Cite as

The neuropsychiatry of the cerebellum — insights from the clinic

  • Jeremy D. Schmahmann
  • Jeffrey B. Weilburg
  • Janet C. Sherman
Original Article

Abstract

A central aspect of the cerebellar cognitive affective syndrome is the dysregulation of affect that occurs when lesions involve the ‘limbic cerebellum’ (vermis and fastigial nucleus). In this case series we describe neuropsychiatric disturbances in adults and children with congenital lesions including cerebellar agenesis, dysplasia, and hypoplasia, and acquired conditions including cerebellar stroke, tumor, cerebellitis, trauma, and neurodegenerative disorders. The behaviors that we witnessed and that were described by patients and families included distractibility and hyperactivity, impulsiveness, disinhibition, anxiety, ritualistic and stereotypical behaviors, illogical thought and lack of empathy, as well as aggression and irritability. Ruminative and obsessive behaviors, dysphoria and depression, tactile defensiveness and sensory overload, apathy, childlike behavior, and inability to appreciate social boundaries and assign ulterior motives were also evident. We grouped these disparate neurobehavioral profiles into five major domains, characterized broadly as disorders of attentional control, emotional control, and social skill set as well as autism spectrum disorders, and psychosis spectrum disorders. Drawing on our dysmetria of thought hypothesis, we conceptualized the symptom complexes within each putative domain as reflecting either exaggeration (overshoot, hypermetria) or diminution (hypotonia, or hypometria) of responses to the internal or external environment. Some patients fluctuated between these two states. We consider the implications of these neurobehavioral observations for the care of patients with ataxia, discuss the broader role of the cerebellum in the pathogenesis of these neuropsychiatric symptoms, and revisit the possibility of using cerebellar stimulation to treat psychiatric disorders by enhancing cerebellar modulation of cognition and emotion.

Key words

Cognition emotion dysmetria imaging anatomy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Neuburger M. (1897). Die historische Entwicklung der experimentellen Gehirnund Rückenmarksphysiologie vor Flourens. Ferdinand Enke Verlag, Stuttgart. Translated and edited, with additional material, by Edwin Clarke. The historical development of experimental brain and spinal cord physiology before Flourens. Baltimore and London: Johns Hopkins University Press; 1981.Google Scholar
  2. 2.
    Macklis RM, Macklis JD. Historical and phrenologic reflections on the nonmotor functions of the cerebellum: love under the tent? Neurology. 1992;42:928–32.PubMedGoogle Scholar
  3. 3.
    Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121:561–79.PubMedGoogle Scholar
  4. 4.
    Levisohn L, Cronin-Golomb A, Schmahmann JD. Neuropsychological consequences of cerebellar tumor resection in children: cerebellar cognitive affective syndrome in a pédiatric population. Brain. 2000;123:1041–50.PubMedGoogle Scholar
  5. 5.
    Grill J, Viguier D, Kieffer V, Bulteau C, Sainte-Rose C, Hartmann O, et al. Critical risk factors for intellectual impairment in children with posterior fossa tumors: the role of cerebellar damage. J Neurosurg. 2004;101(2 Suppl.): 152–8.PubMedGoogle Scholar
  6. 6.
    Turkei SB, Shu Chen L, Nelson MD, Hyder D, Gilles FH, Woodall L, et al. Case series: acute mood symptoms associated with posterior fossa lesions in children. J Neuropsychiatry Clin Neurosci. 2004;16:443–5.Google Scholar
  7. 7.
    Berger A, Sadeh M, Tzur G, Shuper A, Kornreich L, Inbar D, et al. Task switching after cerebellar damage. Neuropsychology. 2005;19:362–70.PubMedGoogle Scholar
  8. 8.
    Richter S, Schoch B, Kaiser O, Groetschel H, Dimitrova A, Hein-Kropp C, et al. Behavioral and affective changes in children and adolescents with chronic cerebellar lesions. Neurosci Lett. 2005;381:102–7.PubMedGoogle Scholar
  9. 9.
    Ronning C, Sundet K, Due-Tonnessen B, Lundar T, Helseth E. Persistent cognitive dysfunction secondary to cerebellar injury in patients treated for posterior fossa tumors in childhood. Pediatr Neurosurg. 2005;41:15–21.PubMedGoogle Scholar
  10. 10.
    Wisoff JH, Epstein FJ. Pseudobulbar palsy after posterior fossa operation in children. Neurosurgery. 1984;15:707–9.PubMedGoogle Scholar
  11. 11.
    Kingma A, Mooij JJA, Metemaekers JDM, et al. Transient mutism and speech disorders after posterior fossa surgery in children with brain tumors. Acta Neurochir. 1994; 131:74–9.Google Scholar
  12. 12.
    Pollack IF, Polinko P, Albright AL, et al. Mutism and pseudobulbar symptoms after resection of posterior fossa tumors in children: incidence and pathophysiology. Neurosurgery. 1995;37:885–93.PubMedGoogle Scholar
  13. 13.
    Riva D, Giorgi C. The cerebellum contributes to higher functions during development: evidence from a series of children surgically treated for posterior fossa tumours. Brain. 2000;123:1051–61.PubMedGoogle Scholar
  14. 14.
    Maryniak A, Roszkowski M. Cognitive and affective disturbances in children after surgical treatment of cerebellar tumors. Neurol Neurochir Pol. 2005;39:202–6.PubMedGoogle Scholar
  15. 15.
    Craig RJ. Psychological assessment with the Millon Clinical Multiaxial Inventory (II): An interpretive guide. Odessa, FL: Psychological Assessment Resources; 1993.Google Scholar
  16. 16.
    Goodman WK, Price LH, Rasmussen SA, Mazure C, Fleischmann RL, Hill CL, et al. The Yale-Brown Obsessive Compulsive Scale, I: development, use, and reliability. Arch Gen Psychiatry. 1989;46:1006–11.PubMedGoogle Scholar
  17. 17.
    Trouillas P, Takayanagi T, Hallett M, Currier RD, Subramony SH, Wessel K, et al. International Cooperative Ataxia Rating Scale for pharmacological assessment of the cerebellar syndrome. The Ataxia Neuropharmacology Committee of the World Federation of Neurology. J Neurol Sci. 1997;145:205–11.PubMedGoogle Scholar
  18. 18.
    Schmahmann JD, MacMore J, Gardner R, Vangel MG. Evaluating ataxia with a modified version of the international cooperative ataxia rating scale (MICARS) and development and validation of a brief ataxia rating scale (BARS). Neurology. 2007;68(12 Suppl. 1):A157.Google Scholar
  19. 19.
    Brodai A. Neurological anatomy in relation to clinical medicine. 2nd ed, Oxford, New York. 1981.Google Scholar
  20. 20.
    Sener RN, Jinkins JR. Subtotal agenesis of the cerebellum in an adult. MRI demonstration. Neuroradiology. 1993;35: 286–7.PubMedGoogle Scholar
  21. 21.
    Dow RS, Moruzzi G. The physiology and pathology of the cerebellum. Minneapolis, MN: University of Minnesota Press; 1958.Google Scholar
  22. 22.
    Schmahmann JD. An emerging concept: the cerebellar contribution to higher function. Arch Neurol. 1991;48: 1178–87.PubMedGoogle Scholar
  23. 23.
    Glickstein M. Cerebellar agenesis. Brain. 1994;117: 1209–12.PubMedGoogle Scholar
  24. 24.
    Trouillas P. The cerebellar serotoninergic system and its possible involvement in cerebellar ataxia. Can J Neurol Sci. 1993;20(Suppl 3):S78–82.PubMedGoogle Scholar
  25. 25.
    Lou JS, Goldfarb L, McShane L, Gatev P, Hallett M. Use of buspirone for treatment of cerebellar ataxia. An open-label study. Arch Neurol. 1995;52:982–8.PubMedGoogle Scholar
  26. 26.
    Leroi I, O’Hearn E, Marsh L, et al. Psychopathology in patients with degenerative cerebellar diseases: a comparison to Huntington’s disease. Am J Psychiatry. 2002;159: 1306–14.PubMedGoogle Scholar
  27. 27.
    Parvizi J, Joseph J, Press DZ, Schmahmann JD. Pathological laughter and crying in patients with multiple system atrophy-cerebellar type. Mov Disord. 2007;22:798–803.PubMedGoogle Scholar
  28. 28.
    Schmahmann JD. Dysmetria of thought. Clinical consequences of cerebellar dysfunction on cognition and affect. Trends Cognit Sciences. 1998;2:362–70.Google Scholar
  29. 29.
    Holmes G. The symptoms of acute cerebellar injuries due to gunshot wounds. Brain. 1917;40:461–535.Google Scholar
  30. 30.
    Brunet E, Sarfati Y, Hardy-Bayle MC, Decety J. A PET investigation of the attribution of intentions with a nonverbal task. Neuroimage. 2000;11:157–66.PubMedGoogle Scholar
  31. 31.
    Calarge C, Andreasen NC, O’Leary DS. Visualizing how one brain understands another: a PET study of theory of mind. Am J Psychiatry. 2003;160:1954–64.PubMedGoogle Scholar
  32. 32.
    Weilburg JB, Bear DM, Sachs G. Three patients with concomitant panic attacks and seizure disorder: possible clues to the neurology of anxiety. Am J Psychiatry. 1987; 144:1053–6.PubMedGoogle Scholar
  33. 33.
    Siddiqui MS, Kirsch-Darrow L, Fernandez HH, Jacobsen CE, Okun MS. Prevalence of pseudobulbar affect in movement disorders and its mood correlates. Neurology, A369.Google Scholar
  34. 34.
    Parvizi J, Anderson SW, Martin C, Damasio AR, Damasio H. Pathological laughter and crying: a link to the cerebellum. Brain. 2001;124:1708–19.PubMedGoogle Scholar
  35. 35.
    Flourens P. Recherches experimentales sur les proprietes et les fonctions du systeme nerveux dons les animaux vertebres Paris: Crevot; 1824.Google Scholar
  36. 36.
    Combettes. Absence complète du cervelet, des pédoncules postérieurs et de la protubérance cérébrale chez une jeune fille morte dans sa onzime année. Bull Soc Anat de Paris. 1831;5:148–57.Google Scholar
  37. 37.
    Moruzzi G. Paleocerebellar inhibition of vasomotor and respiratory carotid sinus reflexes. J Neurophysiol. 1940; 3:20–32.Google Scholar
  38. 38.
    Moruzzi G. Sham rage and localized autonomie responses elicited by cerebellar stimulation in the acute thalamic cat. In, Proc XVII Int Congress Physiol Oxford; 1947,pp 114–5.Google Scholar
  39. 39.
    Snider RS. Recent contributions to the anatomy and physiology of the cerebellum. Arch Neurol Psych. 1950; 64:196–219.Google Scholar
  40. 40.
    Zanchetti A, Zoccolini A. Autonomie hypothalamic outbursts elicited by cerebellar stimulation. J Neurophysiol. 1954;17:473–83.Google Scholar
  41. 41.
    Berntson G, Potolicchio S Jr, Miller N. Evidence for higher functions of the cerebellum. Eating and grooming elicited by cerebellar stimulation in cats. Proc Natl Acad Sci USA. 1973;70:2497–9.PubMedGoogle Scholar
  42. 42.
    Dow RS. Some novel concepts of cerebellar physiology. Mt Sinai J Med. 1974;41:103–19.PubMedGoogle Scholar
  43. 43.
    Heath RG. Modulation of emotion with a brain pacemaker. Treatment for intractable psychiatric illness. J Nerv Ment Dis. 1977;165:300–17.PubMedGoogle Scholar
  44. 44.
    Cooper IS, Amin L, Gilman S, Waltz JM. The effect of chronic stimulation of cerebellar cortex on epilepsy in man. In: Cooper IS, Riklan M, Snider RS, editors. The cerebellum, epilepsy and behavior. New York: Plenum Press; 1974. pp 119–72.Google Scholar
  45. 45.
    Nashold BS, Slaughter DG. Effects of stimulating or destroying the deep cerebellar regions in man. J Neurosurg. 1969;31:172–86.PubMedGoogle Scholar
  46. 46.
    Reis DJ, Doba N, Nathan MA. Predatory attack, grooming and consummatory behaviors evoked by electrical stimulation of cat cerebellar nuclei. Science. 1973;182:845–7.PubMedGoogle Scholar
  47. 47.
    Berman AJ, Berman D, Prescott JW. The effects of cerebellar lesions on emotional behavior in the rhesus monkey. In: Cooper IS, Riklan M, Snider M, editors, The cerebellum, epilepsy and behavior. New York: Plenum Press; 1978. Reprinted in: Schmahmann JD, editor. The cerebellum and cognition San Diego, CA: Academic Press. Int Rev Neurobiol. 1997;41:111-9.Google Scholar
  48. 48.
    Courchesne E, Yeung-Courchesne R, Press GA, Hesselink JR, Jernigan TL. Hypoplasia of cerebellar vermal lobules VI and VII in autism. N Engl J Med. 1988; 318:1349–54.PubMedGoogle Scholar
  49. 49.
    Bauman M, Kemper TL. Histoanatomic observations of the brain in early infantile autism. Neurology. 1985;35: 866–74.PubMedGoogle Scholar
  50. 50.
    Bauman ML, Kemper TL. Neuroanatomic observations of the brain in autism: a review and future directions. Int J Dev Neurosci. 2005;23:183–7.PubMedGoogle Scholar
  51. 51.
    Murakami JW, Courchesne E, Press GA, et al. Reduced cerebellar hemisphere size and its relationship to vermal hypoplasia in autism. Arch Neurol. 1989;46:689–94.PubMedGoogle Scholar
  52. 52.
    Yip J, Soghomonian JJ, Blatt GJ. Decreased GAD67 mRNA levels in cerebellar Purkinje cells in autism: pathophysiological implications. Acta Neuropathol (Berl). 2007;113: 559–68.Google Scholar
  53. 53.
    Lippmann S, Manshadi M, Baldwin H, et al. Cerebellar vermis dimensions on computerized tomographic scans of schizophrenic and bipolar patients. Am J Psychiatry. 1982;139:667–8.PubMedGoogle Scholar
  54. 54.
    Moriguchi I. A study of schizophrenic brains by computerized tomography scans. Folia Psychiatr Neurol Jpn. 1981; 35:55–72.PubMedGoogle Scholar
  55. 55.
    Joseph AB, Anderson WH, O’Leary DH. Brainstem and vermis atrophy in catatonia. Am J Psychiatry. 1985;142: 352–4.PubMedGoogle Scholar
  56. 56.
    Okugawa G, Nobuhara K, Minami T, Tamagaki C, Takase K, Sugimoto T, et al. Subtle disruption of the middle cerebellar peduncles in patients with schizophrenia. Neuropsychobiology. 2004;50:119–23.PubMedGoogle Scholar
  57. 57.
    Okugawa G, Nobuhara K, Minami T, Takase K, Sugimoto T, Saito Y, et al. Neural disorganization in the superior cerebellar peduncle and cognitive abnormality in patients with schizophrenia: a diffusion tensor imaging study. Prog Neuropsychopharmacol Biol Psychiatry. 2006;30:1408–12.PubMedGoogle Scholar
  58. 58.
    Loeber RT, Cintron CMB, Yurgelun-Todd DA. Morphometry of individual cerebellar lobules in schizophrenia. Am J Psychiatry. 2001;158:952–4.PubMedGoogle Scholar
  59. 59.
    Szeszko PR, Gunning-Dixon F, Ashtari M, Snyder PJ, Lieberman JA, Bilder RM. Reversed cerebellar asymmetry in men with first-episode schizophrenia. Biol Psychiatry. 2003; 53:450–9.PubMedGoogle Scholar
  60. 60.
    Ichimiya T, Okubo Y, Suhara T, Sudo Y. Reduced volume of the cerebellar vermis in neuroleptic-naive schizophrenia. Biol Psychiatry. 2001;49:20–7.PubMedGoogle Scholar
  61. 61.
    Paradiso S, Andreasen NC, O’Leary DS, Arndt S, Robinson RG. Cerebellar size and cognition: correlations with IQ, verbal memory, and motor dexterity. Neuropsychiat Neuropsychol Behav Neurol. 1997;10:1–8.Google Scholar
  62. 62.
    Szeszko PR, Gunning-Dixon F, Goldman RS, Bates J, Ashtari M, Snyder PJ, et al. Lack of normal association between cerebellar volume and neuropsychological functions in first-episode schizophrenia. Am J Psychiatry. 2003;160:1884–7.PubMedGoogle Scholar
  63. 63.
    Keller A, Castellanos FX, Vaituzis AC, Jeffries NO, Giedd JN, Rapoport JL. Progressive loss of cerebellar volume in childhood-onset schizophrenia. Am J Psychiatry. 2003;160(1):128–33.PubMedGoogle Scholar
  64. 64.
    Snider SR. Cerebellar pathology in schizophrenia-cause or consequence? Neurosci Behav Rev. 1982;6:47–53.Google Scholar
  65. 65.
    Schmahmann JD. The role of the cerebellum in affect and psychosis. J Neurolinguistics. 2000;13:189–214.Google Scholar
  66. 66.
    Konarski JZ, Mclntyre RS, Grupp LA, Kennedy SH. Is the cerebellum relevant in the circuitry of neuropsychiatric disorders? J Psychiatry Neurosci. 2005;30:178–86.PubMedGoogle Scholar
  67. 67.
    Papez JW. A proposed mechanism of emotion. Arch Neurol Psychiat. 1937;38:725–44.Google Scholar
  68. 68.
    Vilensky JA, Van Hoesen GW. Corticopontine projections from the cingulate cortex in the rhesus monkey. Brain Res. 1981;205:391–5.PubMedGoogle Scholar
  69. 69.
    Haines DE, Dietrichs E. An HRP study of hypothalamo-cerebellar and cerebello-hypothalamic connections in squirrel monkey (Saimiri sciureus). J Comp Neurol. 1984; 229:559–75.PubMedGoogle Scholar
  70. 70.
    Glickstein M, May III JG, Mercier BE. Corticopontine projection in the macaque: the distribution of labelled cortical cells after large injections of horseradish peroxidase in the pontine nuclei. J Comp Neurol. 1985;235:343–59.PubMedGoogle Scholar
  71. 71.
    Schmahmann JD, Pandya DN. Anatomical investigation of projections to the basis pontis from posterior parietal association cortices in rhesus monkey. J Comp Neurol. 1989;289:53–73.PubMedGoogle Scholar
  72. 72.
    Schmahmann JD, Pandya DN. Anatomic organization of the basilar pontine projections from prefrontal cortices in rhesus monkey. J Neurosci. 1997;17:438–58.PubMedGoogle Scholar
  73. 73.
    Schmahmann JD, Pandya DN. The cerebrocerebellar system. In: Schmahmann JD, editor. The cerebellum and cognition. San Diego: Academic Press. Int Rev Neurobiol. 1997;41:31–60.Google Scholar
  74. 74.
    Brodai P, Bjaali JG, Aas JE. Organization of cingulo-ponto-cerebellar connections in the cat. Anat Embryol (Berl). 1991;184:245–54.Google Scholar
  75. 75.
    Middleton FA, Strick PL. Anatomical evidence for cerebellar and basal ganglia involvement in higher cognitive function. Science. 1994;266:458–61.PubMedGoogle Scholar
  76. 76.
    Kelly RM, Strick PL. Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. J Neurosci. 2003;23:8432–44.PubMedGoogle Scholar
  77. 77.
    Malm J, Kristensen B, Karlsson T, Carlberg B, Fagerlund M, Olsson T. Cognitive impairment in young adults with infratentorial infarcts. Neurology. 1998;51: 433–40.PubMedGoogle Scholar
  78. 78.
    Neau JP, Arroyo-Anllo E, Bonnaud V, Ingrand P, Gil R. Neuropsychological disturbances in cerebellar infarcts. Acta Neurol Scand. 2000;102:363–70.PubMedGoogle Scholar
  79. 79.
    Paulus KS, Magnano I, Conti M, Galistu P, D’Onofrio M, Satta W, et al. Pure post-stroke cerebellar cognitive affective syndrome: a case report. Neurol Sci. 2004;25:220–4.PubMedGoogle Scholar
  80. 80.
    Exner C, Weniger G, Irle E. Cerebellar lesions in the PICA but not SCA territory impair cognition. Neurology. 2004; 63:2132–5.PubMedGoogle Scholar
  81. 81.
    Akil H, Statham PF, Gotz M, Bramley P, Whittle IR. Adult cerebellar mutism and cognitive-affective syndrome caused by cystic hemangioblastoma. Acta Neurochir (Wien). 2006; 148:597–8.Google Scholar
  82. 82.
    van Harskamp NJ, Rudge P, Cipolotti L. Cognitive and social impairments in patients with superficial siderosis. Brain. 2005;128:1082–92.PubMedGoogle Scholar
  83. 83.
    Steinlin M, Imfeld S, Zulauf P, Boltshauser E, Lovblad KO, Ridolfi Luthy A, et al. Neuropsychological long-term sequelae after posterior fossa tumour resection during childhood. Brain. 2003;126:1998–2008.PubMedGoogle Scholar
  84. 84.
    Allin M, Matsumoto H, Santhouse AM, Nosarti C, Al-Asady MHS, Stewart AL, et al. Cognitive and motor function and the size of the cerebellum in adolescents born very preterm. Brain. 2001;124:60–6.PubMedGoogle Scholar
  85. 85.
    Steinlin M, Zangger B, Boltshauser E. Non-progressive congenital ataxia with or without cerebellar hypoplasia: a review of 34 subjects. Dev Med Child Neurol. 1998; 40:148–54.PubMedGoogle Scholar
  86. 86.
    Richter S, Dimitrova A, Hein-Kropp C, Wilhelm H, Gizewski E, Timmann D. Cerebellar agenesis II: motor and language functions. Neurocase. 2005;11:103–13.PubMedGoogle Scholar
  87. 87.
    Limperopoulos C, Robertson RL, Estroff JA, Barnewolt C, Levine D, Bassan H, et al. Diagnosis of inferior vermian hypoplasia by fetal magnetic resonance imaging: potential pitfalls and neurodevelopmental outcome. Am J Obstet Gynecol. 2006;194:1070–6.PubMedGoogle Scholar
  88. 88.
    Mostofsky SH, Reiss AL, Lockhart P, Denckla MB. Evaluation of cerebellar size in attention-deficit hyperactivity disorder. J Child Neurol. 1998;13:434–9.PubMedCrossRefGoogle Scholar
  89. 89.
    Anderson CM, Polcari A, Lowen SB, Renshaw PF, Teicher MH. Effects of methylphenidate on functional magnetic resonance relaxometry of the cerebellar vermis in boys with ADHD. Am J Psychiatry. 2002;159:1322–8.PubMedGoogle Scholar
  90. 90.
    Anderson CM, Teicher MH, Polcari A, Renshaw PF. Abnormal T2 relaxation time in the cerebellar vermis of adults sexually abused in childhood: potential role of the vermis in stress-enhanced risk for drug abuse. Psychoneuroendocrinology. 2002;27:231–44.PubMedGoogle Scholar
  91. 91.
    Anderson CM, Maas LC, Frederick B, Bendor JT, Spencer TJ, Livni E, et al. Cerebellar vermis involvement in cocaine-related behaviors. Neuropsychopharmacology. 2006;31:1318–26.PubMedGoogle Scholar
  92. 92.
    Desmond JE, Fiez JA. Neuroimaging studies of the cerebellum: language, learning and memory. Trends Cogn Sci. 1998;2:355–62.Google Scholar
  93. 93.
    Schmahmann JD. Cerebellum and brainstem. In: Toga A, Mazziotta J, editors. Brain mapping. The systems. San Diego: Academic Press; 2000. pp 207–59.Google Scholar
  94. 94.
    Schmahmann JD, Doyon J, Toga A, Evans A, Petrides M. MRI atlas of the human cerebellum. San Diego: Academic Press; 2000.Google Scholar
  95. 95.
    Dimitrova A, Weber J, Redies C, Kindsvater K, Maschke M, Kolb FP, et al. MRI atlas of the human cerebellar nuclei. Neuroimage. 2002;17:240–55.PubMedGoogle Scholar
  96. 96.
    Reiman M, Raichle ME, Robins E, et al. Neuroanatomical correlates of a lactate-induced anxiety attack. Arch Gen Psychiat. 1989;46:493–500.PubMedGoogle Scholar
  97. 97.
    Lane RD, Reiman EM, Ahern GL, Schwartz GE, Davidson RJ. Neuroanatomical correlates of happiness, sadness, and disgust. Am J Psychiat. 1997;154:926–33.PubMedGoogle Scholar
  98. 98.
    Beauregard M, Leroux JM, Bergman S, Arzoumanian Y, Beaudoin G, Bourgouin P, et al. The functional neuroanatomy of major depression: an fMRI study using an emotional activation paradigm. Neuroreport. 1998;9: 3253–8.PubMedCrossRefGoogle Scholar
  99. 99.
    Bartels A, Zeki S. The neural basis of romantic love. Neuroreport. 2000;11:3829–34.PubMedGoogle Scholar
  100. 100.
    Ploghaus A, Tracey I, Gati JS, Clare S, Menon RS, Matthews PM, et al. Dissociating pain from its anticipation in the human brain. Science. 1999;284:1979–81.PubMedGoogle Scholar
  101. 101.
    Borsook D, Moulton EA, Tully S, Schmahmann JD, Becerra L. Human cerebellar responses to brush and heat stimuli in healthy and neuropathic pain subjects. The Cerebellum, in press.Google Scholar
  102. 102.
    Parsons LM, Denton D, Egan G, McKinley M, Shade R, Lancaster J, et al. Neuroimaging evidence implicating cerebellum in support of sensory/cognitive processes associated with thirst. Proc Natl Acad Sci USA. 2000;97: 2332–6.PubMedGoogle Scholar
  103. 103.
    Schmahmann JD. From movement to thought: Anatomic substrates of the cerebellar contribution to cognitive processing. Human Brain Mapping. 1996;4:174–98.PubMedGoogle Scholar
  104. 104.
    Bolk L. Das cerebellum der Säugetiere. Haarlem: De Erven F. Bohn; 1906.Google Scholar
  105. 105.
    Mesulam M-M. Principles of behavioral and cognitive Neurology. 2nd ed. New York: Oxford University Press; 2000.Google Scholar
  106. 106.
    Andreasen NC, Paradiso S, O’Leary DS. ‘Cognitive dysmetria’ as an integrative theory of schizophrenia: a dysfunction in cortical-subcortical-cerebellar circuitry? Schizophr Bull. 1998;24:203–18.PubMedGoogle Scholar
  107. 107.
    Volz H, Gaser C, Sauer H. Supporting evidence for the model of cognitive dysmetria in schizophrenia-a structural magnetic resonance imaging study using deformation-based morphometry. Schizophr Res. 2000;46:45–56.PubMedGoogle Scholar
  108. 108.
    Ito M. Cerebellar microcomplexes. In: Schmahmann JD, editor. The cerebellum and cognition. San Diego: Academic Press. Int Rev Neurobiol. 1997;41:475–489.Google Scholar
  109. 109.
    Frank J, Levinson H. Dysmetric dyslexia and dyspraxia. Hypothesis and study. J Am Acad Child Psychiatry. 1973;12:690–701.PubMedCrossRefGoogle Scholar
  110. 110.
    Levinson HN. The cerebellar-vestibular basis of learning disabilities in children, adolescents and adults: hypothesis and study. Percept Mot Skills. 1988;67:983–1006.PubMedGoogle Scholar
  111. 111.
    Nicolson RI, Fawcett AJ, Dean P. Developmental dyslexia: the cerebellar deficit hypothesis. Trends Neurosci. 2001; 24:508–11.PubMedGoogle Scholar
  112. 112.
    Schmahmann JD. Therapeutic and research implications. In: Schmahmann JD, editor. The cerebellum and cognition. San Diego: Academic Press. Int Rev Neurobiol. 1997;41: 637–47.Google Scholar
  113. 113.
    Reynolds D, Nicolson RI, Hambly H. Evaluation of an exercise-based treatment for children with reading difficulties. Dyslexia. 2003;9:48–71.PubMedGoogle Scholar
  114. 114.
    Spangler WJ, Cosgrove GR, Ballantine HT Jr, Cassem EH, Rauch SL, Nierenberg A, et al. Magnetic resonance image-guided stereotactic cingulotomy for intractable psychiatric disease. Neurosurgery. 1996;38:1071–6.PubMedGoogle Scholar
  115. 115.
    Wichmann T, Delong MR. Deep brain stimulation for neurologic and neuropsychiatrie disorders. Neuron. 2006; 52:197–204.PubMedGoogle Scholar
  116. 116.
    Fregni F, Pascual-Leone A. Transcranial magnetic stimulation for the treatment of depression in neurologic disorders. Curr Psychiatry Rep. 2005;7:381–90.PubMedGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Jeremy D. Schmahmann
    • 1
  • Jeffrey B. Weilburg
    • 2
  • Janet C. Sherman
    • 1
  1. 1.Department of NeurologyMassachusetts General Hospital and Harvard Medical SchoolBostonUSA
  2. 2.Department of PsychiatryMassachusetts General Hospital and Harvard Medical SchoolBostonUSA

Personalised recommendations