The Cerebellum

, 6:168 | Cite as

The cerebellum: Comparative and animal studies

Original Article


The cerebellum has a uniform cellular structure and microcircuitry, but the size of its subdivisions varies greatly among vertebrates. This variability is a challenge to anatomists to attempt to relate size differences to differences in characteristic behaviour. Here we review the early work of Lodewijk Bolk on the mammalian cerebellum and relate his observations to unfolded maps of the rodent cerebella. We further take insights from the comparative anatomy of the bird cerebella and find that cerebellar enlargement in large brains is not a passive consequence of overall brain enlargement, but is related to specific behaviour. We speculate that for some rodents (e.g., squirrels), primates and some large-brained birds (crows, parrots and woodpeckers), specifically enlarged cerebella are associated with either the elaboration of forelimb control (squirrels and primates) or in the case of the birds with beak control. The elaboration of such motor behaviour combined with increased visual control could have helped to furnish manipulative skills in these animals. Finally, we review the connections of the mammalian cerebellum and show that several pieces of experimental evidence point to an important function of the cerebellum in sensory control of movement reflex adjustment, and motor learning.

Key words

motor behaviour rodents primates birds cortiocpontine projection 


  1. 1.
    Ramón y Cajal, S. Histologie du système nerveux de l’homme et vertébrés. Vol. 2. Paris: Maloine; 1911.Google Scholar
  2. 2.
    Sultan F, Bower JM. Quantitative Golgi study of the rat cerebellar molecular layer interneurons using principal component analysis. J Comp Neurol. 1998;393:353–73.PubMedCrossRefGoogle Scholar
  3. 3.
    Dieudonne S, Dumoulin A. Serotonin-driven long-range inhibitory connections in the cerebellar cortex. J Neurosci. 2000;20:1837–48.PubMedGoogle Scholar
  4. 4.
    Mugnaini E, Dino MR, Jaarsma D. The unipolar brush cells of the mammalian cerebellum and cochlear nucleus: cytology and microcircuitry. [Review], Progr Brain Res. 1997;114: 131–50.Google Scholar
  5. 5.
    Voogd J, Gerrits NM, Hess DT. Parasagittal zonation of the cerebellum in macaques: an analysis based on acetylcholinesterase histochemistry. In: Glickstein M, Yeo C, Stein J, editors. Cerebellum and neuronal plasticity. New York/ London: Plenum Press; 1987. pp 15–39.Google Scholar
  6. 6.
    Brochu G, Maler L, Hawkes R. Zebrin II: a polypeptide antigen expressed selectively by purkinje cells reveals compartments in rat and fish cerebellum. J Comp Neurol. 1990;291:538–52.PubMedCrossRefGoogle Scholar
  7. 7.
    Wylie DR, Marzban H, Hawkes R, Iwaniuk AN, Pakan JP. Zebrin II expresion in the cerebellum of pigeons: stripes. Soc Neurosci. 2006;149:20.Google Scholar
  8. 8.
    Hawkes R, Eisenman LM. Stripes and zones: the origins of regionalization of the adult cerebellum. Perspect Dev Neurobiol. 1997;5:95–105.PubMedGoogle Scholar
  9. 9.
    Bolk L. Das cerebellum der Säugetiere. Jena: Fischer, G.; 1906.Google Scholar
  10. 10.
    Braitenberg V, Atwood RP. Morphological observations on the cerebellar cortex. J Comp Neurol. 1958;109:l-34.CrossRefGoogle Scholar
  11. 11.
    Sultan F, Braitenberg V. Shapes and sizes of different mammalian cerebella. A study in quantitative comparative neuroanatomy. J Hirnforsch. 1993;34:79–92.PubMedGoogle Scholar
  12. 12.
    Nowak RM. Walker’s mammals of the world. 6th ed. Baltimore: Johns Hopkins University Press; 1999.Google Scholar
  13. 13.
    Van Hooser SD, Nelson SB. The squirrel as a rodent model of the human visual system. Vis Neurosci. 2006;23:765–78.PubMedGoogle Scholar
  14. 14.
    Stalheim-Smith A. Comparative study of the forelimbs of the semifossorial Prairie Dog,Cynomys gunnisoni, and the scansorial Fox Squirrel, Sciurus niger. J Morphol. 1984;180:55–68.PubMedCrossRefGoogle Scholar
  15. 15.
    Stalheim-Smith A. Comparison of the muscle mechanics of the forelimb of three climbers. J Morphol. 1989;202: 89–98.PubMedCrossRefGoogle Scholar
  16. 16.
    Brenowitz GL. Cutaneous mechanoreceptor distribution and its relationship to behavioral specializations in squirrels. Brain Behav Evol. 1980;17:432–53.PubMedCrossRefGoogle Scholar
  17. 17.
    Brenowitz GL. Control of food handling by cutaneous receptor input in squirrels. Brain Behav Evol. 1980;17: 478–90.PubMedCrossRefGoogle Scholar
  18. 18.
    Riley HA. The mammallian cerebellum. Arch Neurol Psychiatry. 1928;20:895–1034.Google Scholar
  19. 19.
    Leiner HC, Leiner AL, Dow RS. Does the cerebellum contribute to mental skills? Behav Neurosci. 1986;100: 443–54.PubMedCrossRefGoogle Scholar
  20. 20.
    Paulin MG. The role of the cerebellum in motor control and perception. Brain Behav Evol. 1993;41:39–50.PubMedCrossRefGoogle Scholar
  21. 21.
    Bower JM. Control of sensory data acquisition. [Review], Int Rev Neurobiol. 1997;41:489–513.PubMedCrossRefGoogle Scholar
  22. 22.
    Sultan F. Why some bird brains are larger than others. Curr Biol. 2005;15:R649–50.PubMedCrossRefGoogle Scholar
  23. 23.
    Larseil O. The development and subdivisions of the cerebellum of birds. J.Comp Neurol. 1948;89:123–89.CrossRefGoogle Scholar
  24. 24.
    Larsell O, Whitlock DG. Further observations on the cerebellum of birds. J Comp Neurol. 1952;97:545–66.PubMedCrossRefGoogle Scholar
  25. 25.
    Senglaub K. Das Kleinhirn der vögel in beziehung zu phylogenetischer Stellung, lebensweise und körpergrösse, nebst beiträgen zum domestikationsproblem. Zeitschrift Wissentschaft Zool. 1964;169:2–63.Google Scholar
  26. 26.
    Legg CR, Mercier B, Glickstein M. Corticopontine projection in the rat: the distribution of labelled cortical cells after large injections of horseradish peroxidase in the pontine nuclei. J Comp Neurol. 1989;286:427–41.PubMedCrossRefGoogle Scholar
  27. 27.
    Glickstein M, May JG, III, Mercier BE. Corticopontine projection in the Macaque: the distribution of labelled cortical cells after large injections of horseradish peroxidase in the pontine nuclei. J Comp Neurol. 1985;235:343–59.PubMedCrossRefGoogle Scholar
  28. 28.
    Miles FA, Fuller JH. Adaptive plasticity in the vestibuloocular responses of the Rhesus Monkey. Brain Res. 1974;80:512–6.PubMedCrossRefGoogle Scholar
  29. 29.
    McCormick DA, Thompson RF. Cerebellum: essential involvement in the classically conditioned eyelid response. Science. 1984;223(4633):296–9.PubMedCrossRefGoogle Scholar
  30. 30.
    Barash S, Melikyan A, Sivakov A, Zhang M, Glickstein M, Thier P. Saccadic dysmetria and adaptation after lesions of the cerebellar cortex. J Neurosci. 1999;19:10931–9.PubMedGoogle Scholar
  31. 31.
    Yeo CH, Hardiman MJ, Glickstein M. Discrete lesions of the cerebellar cortex abolish the classically conditioned nictitating membrane response of the rabbit. Behav Brain Res. 1984;13:261–6.PubMedCrossRefGoogle Scholar
  32. 32.
    Mlikovsky J. Brain size in birds 4. Passeriformes. Acta Soc Zool Bohemoslov. 1992;54:27–37.Google Scholar
  33. 33.
    Mlikovsky J. Brain size in birds 2. Falconiformes through gaviiformes. Vestnik Ceskoslovens Spolec Zool. 1990;53: 200–13.Google Scholar
  34. 34.
    Mlikovsky J. Brain size in birds 3. Columbiformes through piciformes. Vestnik Ceskoslovens Spolec Zool. 1989;53: 252–64.Google Scholar
  35. 35.
    Mlikovsky J. Brain size in birds 1. Tinamiformes through ciconiformes. Vestnik Ceskoslovens Spolec Zool. 1989;53: 33–47.Google Scholar
  36. 36.
    Portmann A. Études sur la cérébralisation chez les oiseaux:II. Les indices intra-céré-braux. Alauda. 1947;15:1–15.Google Scholar
  37. 37.
    Portmann A. Études sur la cérébralisation chez les oiseaux:III.Cérébralisation et mode Ontogénétique. Alauda. 1947;15:161–71.Google Scholar
  38. 38.
    Portmann A. Études Sur La Cérébralisation Chez Les Oiseaux:I. Alauda. 1946;14:2–20.Google Scholar
  39. 39.
    Iwaniuk AN, Nelson JE. A comparative analysis of relative brain size in waterfowl (Anseriformes). Brain Behav Evol. 2001;57:87–97.PubMedCrossRefGoogle Scholar
  40. 40.
    Rehkamper G, Schuchmann KL, Schleicher A, Zilles K. Encephalization in hummingbirds (Trochilidae). Brain Behav Evol. 1991;37:85–91.PubMedCrossRefGoogle Scholar
  41. 41.
    Rehkamper G, Frahm HD, Zilles K. Quantitative development of brain and brain structures in birds (galliformes and passeriformes) compared to that in mammals (insectivores and primates). Brain Behav Evol. 1991;37:125–43.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  1. 1.Department of Cognitive Neurology, HIH for Clinical Brain ResearchUniversity TuebingenTuebingenGermany
  2. 2.Department of AnatomyUniversity College LondonLondonUK

Personalised recommendations