The Cerebellum

, 6:95 | Cite as

The role of transcranial magnetic stimulation in the study of cerebellar cognitive function

  • Massimiliano Oliveri
  • Sara Torriero
  • Giacomo Koch
  • Silvia Salerno
  • Laura Petrosini
  • Carlo Caltagirone
Original Article Scientific Papers

Abstract

Transcranial magnetic stimulation (TMS) allows non-invasive stimulation of brain structures. This technique can be used either for stimulating the motor cortex, recording motor evoked potentials from peripheral muscles, or for modulating the excitability of other non-motor areas in order to establish their necessity for a given task. TMS of the cerebellum can give interesting insights on the cerebellar functions. Paired-TMS techniques, delivering stimuli over the cerebellum followed at various interstimulus intervals by stimuli over the motor cortex, allow studying the pattern of connectivity between the cerebellum and the contralateral motor cortex in physiological as well as in pathological conditions. Repetitive TMS, delivering trains of stimuli at different frequencies, allows interfering with the function of cerebellar circuits during the execution of cognitive tasks. This application complements neuropsychological and neuroimaging studies in the study of the cerebellar involvement in a number of cognitive operations, ranging from procedural memory, working memory and learning through observation.

Keywords

Cerebellum TMS cognitive functions 

References

  1. 1.
    Allen GI, Tsukahara N. Cerebro cerebellar communication systems. Physiol Rev. 1974;54:957–1006.PubMedGoogle Scholar
  2. 2.
    Bao S, Chen L, Kim JJ, Thompson RF. Cerebellar cortical inhibition and classical eyeblink conditioning. PNAS. 2002;99:1592–7.PubMedCrossRefGoogle Scholar
  3. 3.
    Schutter DJ, van Honk J, d’Alfonso AA, Peper JS, Panksepp J. High frequency repetitive transcranial magnetic over the medial cerebellum induces a shift in the prefrontal electro-encephalography gamma spectrum: A pilot study in humans. Neurosci Lett. 2003;16;336:73–6.CrossRefGoogle Scholar
  4. 4.
    Ugawa Y, Uesaka Y, Terao Y, Hanajima R, Kanazawa I. Magnetic stimulation over the cerebellum in humans. Ann Neurol. 1995;37:703–13.PubMedCrossRefGoogle Scholar
  5. 5.
    Iwata NK, Ugawa Y. The effects of cerebellar stimulation on the motor cortical excitability in neurological disorders: A review. Cerebellum. 2005;4:218–23.PubMedCrossRefGoogle Scholar
  6. 6.
    Chen R, Classen J, Gerloff C, Celnik P, Wassermann EM, Hallett M, et al. Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation. Neurology. 1997;48:1389–403.Google Scholar
  7. 7.
    Muellbacher W, Ziemann U, Boroojerdi B, Hallett M. Effects of low-frequency transcranial magnetic stimulation on motor excitability and basic motor behavior. Clin Neurophysiol. 2000; 111:1002–7.PubMedCrossRefGoogle Scholar
  8. 8.
    Maeda F, Keenan JP, Tormos JM, Topka H, Pascual-Leone A. Modulation of corticospinal excitability by repetitive transcranial magnetic stimulation. Clin Neurophysiol. 2000; 111:800–5.PubMedCrossRefGoogle Scholar
  9. 9.
    Hilgetag CC, Theoret H, Pascual-Leone A. Enhanced visual spatial attention ipsilateral to rTMS-induced ‘virtual lesions’ of human parietal cortex. Nat Neurosci. 2001;4:953–7.PubMedCrossRefGoogle Scholar
  10. 10.
    Pascual-Leone A, Valls-Sole J, Wassermann EM, Hallett M. Responses to rapid-rate transcranial magnetic stimulation of the human motor cortex. Brain. 1994;117:847–58.PubMedCrossRefGoogle Scholar
  11. 11.
    Berardelli A, Inghilleri M, Rothwell JC, Romeo S, Curra A, Gilio F, et al. Facilitation of muscle evoked responses after repetitive cortical stimulation in man. Exp Brain Res. 1998;122:79–84.PubMedCrossRefGoogle Scholar
  12. 12.
    Mottaghy FM, Hungs M, Brugmann M, Sparing R, Boroojerdi B, Foltys H, et al. Facilitation of picture naming after repetitive transcranial magnetic stimulation. Neurology. 1999;53:1806–12.PubMedGoogle Scholar
  13. 13.
    Borrojerdi B, Phipps M, Kopylev L, Wharton CM, Cohen LG, Grafman J. Enhancing analogic reasoning with rTMS over the left prefrontal cortex. Neurology. 2001;56: 526–8.Google Scholar
  14. 14.
    Di Lazzaro V, Oliviero A, Mazzone P, Pilato F, Saturno E, Dileone M, et al. Short-term reduction of intracortical inhibition in the human motor cortex induced by repetitive transcranial magnetic stimulation. Exp Brain Res. 2002;147:108–13.PubMedCrossRefGoogle Scholar
  15. 15.
    Civardi C, Cantello R, Asselman P, Rothwell JC. Transcranial magnetic stimulation can be used to test connections to primary motor areas from frontal and medial cortex in humans. Neuroimage. 2001;14:1444–53.PubMedCrossRefGoogle Scholar
  16. 16.
    Gerschlager W, Siebner HR, Rothwell JC. Decreased corticospinal excitability after subthreshold 1 Hz rTMS over lateral premotor cortex. Neurology. 2001;57:449–55.PubMedGoogle Scholar
  17. 17.
    Munchau A, Bloem BR, Irlbacher K, Trimble MR, Rothwell JC. Functional connectivity of human premotor and motor cortex explored with repetitive transcranial magnetic stimulation. J Neurosci. 2002;22:554–61.PubMedGoogle Scholar
  18. 18.
    Gershlager W, Christensen LO, Bestmann S, Rothwell JC. rTMS over the cerebellum can increase corticospinal excit-ability through a spinal mechanism involving activation of peripheral nerve fibres. Clin Neurophysiol. 2002;113: 1435–40.CrossRefGoogle Scholar
  19. 19.
    Werhahn KJ, Taylor J, Ridding M, Meyer BU, Rothwell JC. Effect of transcranial magnetic stimulation over the cerebellum on the excitability of human motor cortex. Electroencephalogr Clin Neurophysiol. 1996;101:58–66.PubMedCrossRefGoogle Scholar
  20. 20.
    Oliveri M, Koch G, Torriero S, Caltagirone C. Increased facilitation of the primary motor cortex following 1 Hz repetitive transcranial magnetic stimulation of the contralateral cerebellum in normal humans. Neurosci Lett. 2005;16:188–93.CrossRefGoogle Scholar
  21. 21.
    Kujirai T, Caramia MD, Rothwell JC, Day BL, Thompson PD, Ferbert A, et al. Corticocortical inhibition in human motor cortex. J Physiol. 1993;471:501–19.PubMedGoogle Scholar
  22. 22.
    Huntley GW, Jones EG. Relationship of intrinsic connections to forelimb movement representations in monkey motor cortex: A correlative anatomic and physiological study. J Neurophysiol. 1991;66:390–413.PubMedGoogle Scholar
  23. 23.
    Keller A. Intrinsic synaptic organization of the motor cortex. Cereb Cortex. 1993;3:430–41.PubMedCrossRefGoogle Scholar
  24. 24.
    Koch G, Oliveri M, Torriero S, Caltagirone C. Underestimation of time perception after repetitive transcranial magnetic stimulation. Neurology. 2003;60:1844–6.PubMedGoogle Scholar
  25. 25.
    Fierro B, Giglia G, Palermo A, Pecoraro C, Scalia S, Brighina F. Modulatory effects of 1 Hz rTMS over the cerebellum on motor cortex excitability. Exp Brain Res. 2007; 176(3):440–7.PubMedCrossRefGoogle Scholar
  26. 26.
    Daskalakis ZJ, Paradiso GO, Christensen BK, Fitzgerald PB, Gunraj C, Chen R. Exploring the connectivity between the cerebellum and motor cortex in humans. J Physiol. 2004;57(Pt 2):689–700.CrossRefGoogle Scholar
  27. 27.
    Holdefer RN, Miller LE, Chen LL, Houk JC. Functional connectivity between cerebellum and primary motor cortex in the awake monkey. J Neurophysiol. 2000;84:585–90.PubMedGoogle Scholar
  28. 28.
    Westheimer G, Blair SM. Function organization of primate oculomotor system revealed by cerebellectomy. Exp Brain Res. 1974;21:463–72.PubMedCrossRefGoogle Scholar
  29. 29.
    Lisberger SG, Fuchs AF. Role of primate flocculus during rapid behavioral modification of vestibuloocular reflex. I. Purkinje cell activity during visually guided horizontal smooth-pursuit eye movements and passive head rotation. J Neurophysiol. 1978;41:733–63.PubMedGoogle Scholar
  30. 30.
    Stone LS, Lisberger SG. Visual responses of Purkinje cells in the cerebellar flocculus during smooth-pursuit eye movements in monkeys. II. Complex spikes. J Neurophysiol. 1990;63:1262–75.PubMedGoogle Scholar
  31. 31.
    Ohtsuka K, Enoki T. Transcranial magnetic stimulation over the posterior cerebellum during smooth pursuit eye movements in man. Brain. 1998;121:429–35.PubMedCrossRefGoogle Scholar
  32. 32.
    Nagel M, Zangemeister WH. The effect of transcranial magnetic stimulation over the cerebellum on the synkinesis of coordinated eye and head movements. J Neurol Sci. 2003;213:35–45.PubMedCrossRefGoogle Scholar
  33. 33.
    Silveri MC, Misciagna S, Terrezza G. Right side neglect in right cerebellar lesion. J Neurol Neurosurg Psychiatry. 2001;71(1):114–7.PubMedCrossRefGoogle Scholar
  34. 34.
    Eckert MA, Leonard CM, Richards TL, Aylward EH, Thomson J, Berninger VW. Anatomical correlates of dyslexia: Frontal and cerebellar findings. Brain. 2003;126:482–94.PubMedCrossRefGoogle Scholar
  35. 35.
    Leggio MG, Silveri MC, Petrosini L, Molinari M. Phonological grouping is specifically affected in cerebellar patients: A verbal fluency study. J Neurol Neurosurg Psychiatry. 2000;69:102–6.PubMedCrossRefGoogle Scholar
  36. 36.
    Ivry RB, Spencer RM, Zelaznik HN, Diedrichsen J. The cerebellum and event timing. Ann NY Acad Sci. 2002;978:302–17.PubMedCrossRefGoogle Scholar
  37. 37.
    Akshoomoff NA, Courchesne E. A new role for the cerebellum in cognitive operations. Behav Neurosci. 1992;160:731–8.CrossRefGoogle Scholar
  38. 38.
    Wallesch CW, Horn A. Long-term effects of cerebellar pathology on cognitive functions. Brain Cognit. 1990;14:19–25.CrossRefGoogle Scholar
  39. 39.
    Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121:561–79.PubMedCrossRefGoogle Scholar
  40. 40.
    Theoret H, Haque J, Pascual-Leone A. Increased variability of a paced finger tapping accuracy following repetitive magnetic stimulation of the cerebellum in humans. Neurosci Lett. 2001;306:29–32.PubMedCrossRefGoogle Scholar
  41. 41.
    Miall RC, Christensen LO. The effect of rTMS over the cerebellum in normal human volunteers on peg-board movement performance. Neurosci Lett. 2004;23:185–9.CrossRefGoogle Scholar
  42. 42.
    Quintero-Gallego EA, Gomez CM, Casares EV, Marquez J, Perez-Santamaria FJ. Declarative and procedural learning in children and adolescents with posterior fossa tumours. Behav Brain Funct. 2006;2:9.PubMedCrossRefGoogle Scholar
  43. 43.
    Koch G, Oliveri M, Torriero S, Salerno S, Gerfo EL, Caltagirone C. Repetitive TMS of cerebellum interferes with millisecond time processing. Exp Brain Res. 2006 Dec 5; [Epub ahead of print].Google Scholar
  44. 44.
    Ivry RB, Spencer RM. The neural representation of time. Curr Opin Neurobiol. 2004;14(2):225–32. Review.PubMedCrossRefGoogle Scholar
  45. 45.
    Keele SW, Ivry R. Does the cerebellum provide a common computation for diverse tasks? A timing hypothesis. Ann NY Acad Sci. 1990;608:179–207.PubMedCrossRefGoogle Scholar
  46. 46.
    Ackermann H, Graber S, Hertrich I, Daum I. Categorical speech perception in cerebellar disorders. Brain Lang. 1997;60(2):323–31.PubMedCrossRefGoogle Scholar
  47. 47.
    Torriero S, Oliveri M, Koch G, Caltagirone C, Petrosini L. Interference of left and right cerebellar rTMS with procedural learning. J Cogn Neurosci. 2004; 16:1605–11.PubMedCrossRefGoogle Scholar
  48. 48.
    Nissen MJ, Bullemer P. Attentional requirements of learning: Evidence from performance measures. Cogn Psychol. 1987;19:1–32.CrossRefGoogle Scholar
  49. 49.
    Pascual-Leone A, Grafman J, Clark K, Stewart BA, Massaquoi S. Procedural learning in Parkinson’s disease and cerebellar degeneration. Ann Neurology. 1993;34: 594–602.CrossRefGoogle Scholar
  50. 50.
    Molinari M, Leggio MG, Solida A, Ciorra R, Misciagna S, Silveri MC, Petrosini L. Cerebellum and procedural learning: Evidence from focal cerebellar lesions. Brain. 1997;120:1753–62.PubMedCrossRefGoogle Scholar
  51. 51.
    Gómez-Beldarrain M, Garcýa-Moncó JC, Rubio B, Pascual-Leone A. Effect of focal cerebellar lesions on procedural learning in the serial reaction time task. Exp Brain Res. 1998;120:25–30.PubMedCrossRefGoogle Scholar
  52. 52.
    Middleton FA, Strick PL. Dentate output channels: Motor and cognitive components. Prog Brain Res. 1997;114: 553–66.PubMedCrossRefGoogle Scholar
  53. 53.
    Pascual-Leone A, Tarazona F, Keenan J, Tormos JM, Hamilton R, Catala D. Transcranial magnetic stimulation and neuroplasticity. Neuropsychologia. 1999;37:207–17.PubMedCrossRefGoogle Scholar
  54. 54.
    Pascual-Leone A, Wassermann EM, Grafman J, Hallet M. The role of the dorsolateral frontal lobe in implicit procedural learning. Exp Brain Res. 1996;107:479–85.PubMedCrossRefGoogle Scholar
  55. 55.
    Pascual-Leone A, Grafman J, Hallet M. Procedural learning and prefrontal cortex. Ann NY Acad Sci. 1995;769:61–70.PubMedCrossRefGoogle Scholar
  56. 56.
    Torriero S, Oliveri M, Koch G, Caltagirone C, Petrosini L. The what and how of observational learning. J Cogn Neurosci. 2006. (submitted).Google Scholar
  57. 57.
    Torriero S, Oliveri M, Koch G, Lo Gerfo E, Salerno S, Petrosini L, et al. Cortical networks of procedural learning: evidence from cerebellar damage. Neuropsychologia. 2007; 45(6):1208–14.PubMedCrossRefGoogle Scholar
  58. 58.
    Davis R. Cerebellar stimulation for cerebral palsy spasticity, function, and seizures. Arch Med Res. 2000;31(3):290–9. Review.PubMedCrossRefGoogle Scholar
  59. 59.
    Brighina F, Daniele O, Piazza A, Giglia G, Fierro B. Hemispheric cerebellar rTMS to treat drug-resistant epilepsy: Case reports. Neurosci Lett. 2006;397(3):229–33.PubMedCrossRefGoogle Scholar
  60. 60.
    Awh E, Jonides J, Smith EE, Schumacker EH, Koeppe R, Katz S. Dissociation of storage and rehearsal in verbal working memory: Evidence from PET. Psychol Sci. 1996;7:25–31.CrossRefGoogle Scholar
  61. 61.
    Desmond JE, Gabrieli JD, Wagner AD, Ginier BL, Glover GH. Lobular patterns of cerebellar activation in verbal working-memory and finger-tapping tasks as revealed by functional MRI. J Neurosci. 1997;17:9675–85.PubMedGoogle Scholar
  62. 62.
    Schumacher EH, Lauber E, Awh E, Jonides J, Smith EE, Koeppe RA. PET evidence for an amodal verbal working memory system. Neuroimage. 1996;3:79–88.PubMedCrossRefGoogle Scholar
  63. 63.
    Fiez JA, Raife EA, Balota DA, Schwarz JP, Raichle ME, Petersen SE. A positron emission tomography study of the short-term maintenance of verbal information. J Neurosci. 1996;16:808–22.PubMedGoogle Scholar
  64. 64.
    Paulesu E, Frith CD, Frackowiak RS. The neural correlates of the verbal component of working memory. Nature. 1993;362:342–5.PubMedCrossRefGoogle Scholar
  65. 65.
    Desmond JE, Chen SH, Shieh PB. Cerebellar transcranial magnetic stimulation impairs verbal working memory. Ann Neurol. 2005;58:553–60.PubMedCrossRefGoogle Scholar

Copyright information

© Taylor & Francis 2007

Authors and Affiliations

  • Massimiliano Oliveri
    • 1
    • 2
  • Sara Torriero
    • 2
  • Giacomo Koch
    • 2
  • Silvia Salerno
    • 2
  • Laura Petrosini
    • 2
    • 3
  • Carlo Caltagirone
    • 2
    • 4
  1. 1.Dipartimento di PsicologiaUniversità di PalermoItaly
  2. 2.Fondazione “Santa Lucia” IRCCSRoma
  3. 3.Dipartimento di PsicologiaUniversità di Roma “La Sapienza”Italy
  4. 4.Clinica NeurologiaUniversità di Roma “Tor Vergata”Italy

Personalised recommendations