The Cerebellum

, Volume 6, Issue 4, pp 287–299 | Cite as

Altered olivocerebellar activity patterns in the connexin36 knockout mouse

  • Sarah P. Marshall
  • Ruben S. Van Der Giessen
  • Chris I. De Zeeuw
  • Eric J. LangEmail author
Original Article


The inferior olive (IO) has among the highest densities of neuronal gap junctions in the nervous system. These gap junctions are proposed to be the underlying mechanism for generating synchronous Purkinje cell complex spike (CS) activity. Gap junctions between neurons are formed mostly by connexin 36 proteins. Thus, the connexin 36 knockout (Cx36KO) mouse provides an opportunity to test whether gap junction coupling between IO neurons is the basis of CS synchrony. Multiple electrode recordings of crus 2 CSs were obtained from wildtype (Wt) and Cx36KO mice. Wts showed statistically significant levels of CS synchrony, with the same spatial distribution as has been reported for other species: high CS synchrony levels occurred mostly among Purkinje cells within the same parasagittally-oriented cortical strip. In contrast, in Cx36KOs, synchrony was at chance levels and had no preferential spatial orientation, supporting the gap junction hypothesis. CS firing rates for Cx36KOs were significantly lower than for Wts, suggesting that electrical coupling is an important determinant of IO excitability. Rhythmic CS activity was present in both Wt and Cx36KOs, suggesting that individual IO cells can act as intrinsic oscillators. In addition, the climbing fiber reflex was absent in the Cx36KOs, validating its use as a tool for assessing electrical coupling of IO neurons. Zebrin II staining and anterograde tracing showed that cerebellar cortical organization and the topography of the olivocerebellar projection are normal in the Cx36KO. Thus, the differences in CS activity between Wts and Cx36KOs likely reflect the loss of electrical coupling of IO cells.

Key words

Oscillation synchrony connexion multielectrode cerebellum 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bennett MVL, Zukin RS. Electrical coupling and neuronal synchronization in the mammalian brain. Neuron. 2004;41:495–511.PubMedCrossRefGoogle Scholar
  2. 2.
    Sotelo C, Llinás R, Baker R. Structural study of inferior olivary nucleus of the cat: morphological correlates of electrotonic coupling. J Neurophysiol. 1974;37(3):541–59.PubMedGoogle Scholar
  3. 3.
    Llinás R, Baker R, Sotelo C. Electrotonic coupling between neurons in cat inferior olive. J Neurophysiol. 1974;37:560–71.PubMedGoogle Scholar
  4. 4.
    Llinás R, Yarom Y. Oscillatory properties of guineapig inferior olivary neurones and their pharmacological modulation: an in vitro study. J Physiol (Lond). 1986;376:163–82.Google Scholar
  5. 5.
    Long MA, Deans MR, Paul DL, Connors BW. Rhythmicity without synchrony in the electrically uncoupled inferior olive. J Neurosci. 2002;22:10898–905.PubMedGoogle Scholar
  6. 6.
    Bell CC, Kawasaki T. Relations among climbing fiber responses of nearby Purkinje cells. J Neurophysiol. 1972;35:155–69.PubMedGoogle Scholar
  7. 7.
    Llinás R, Sasaki K. The functional organization of the olivocerebellar system as examined by multiple Purkinje cell recordings. Eur J Neurosci. 1989;1:587–602.PubMedCrossRefGoogle Scholar
  8. 8.
    Lang EJ, Sugihara I, Welsh JP, Llinás R. Patterns of spontaneous Purkinje cell complex spike activity in the awake rat. J Neurosci. 1999;19:2728–39.PubMedGoogle Scholar
  9. 9.
    Welsh JP, Lang EJ, Sugihara I, Llinás R. Dynamic organization of motor control within the olivocerebellar system. Nature. 1995;374:453–7.PubMedCrossRefGoogle Scholar
  10. 10.
    Lang EJ, Sugihara I, Llinás R. Olivocerebellar modulation of motor cortex ability to generate vibrissal movements in rats. J Physiol (Lond). 2006;571:101–20.CrossRefGoogle Scholar
  11. 11.
    Llinás R, Yarom Y. Electrophysiology of mammalian inferior olivary neurones in vitro. Different types of voltage-dependent ionic conductances. J Physiol (Lond). 1981a;315:549–67.Google Scholar
  12. 12.
    Placantonakis DG, Bukovsky AA, Aicher SA, Kiem H-P, Welsh JP. Continuous electrical oscillations emerge from a coupled network: A study of the inferior olive using lentiviral knockdown of connexin 36. J Neurosci. 2006;26:5008–16.PubMedCrossRefGoogle Scholar
  13. 13.
    Lang EJ, Sugihara I, Llinás R. GABAergic modulation of complex spike activity by the cerebellar nucleoolivary pathway in rat. J Neurophysiol. 1996;76:255–75.PubMedGoogle Scholar
  14. 14.
    Lang EJ. GABAergic and glutamatergic modulation of spontaneous and motor-cortex-evoked complex spike activity. J Neurophysiol. 2002;87:1993–2008.PubMedGoogle Scholar
  15. 15.
    Lang EJ. Organization of olivocerebellar activity in the absence of excitatory glutamatergic input. J Neurosci. 2001;21:1663–75.PubMedGoogle Scholar
  16. 16.
    Blenkinsop TA, Lang EJ. Block of inferior olive gap junctional coupling decreases Purkinje cell complex spike synchrony and rhythmicity. J Neurosci. 2006;26:1739–48.PubMedCrossRefGoogle Scholar
  17. 17.
    Condorelli DF, Belluardo N, Trovato-Salinaro A, Mudo G. Expression of Cx36 in mammalian neurons. Brain Res Rev. 2000;32:72–85.PubMedCrossRefGoogle Scholar
  18. 18.
    Rash JE, Staines WA, Yasumura T, Patel D, Furman CS, Stelmack GL, et al. Immunogold evidence that neuronal gap junctions in adult rat brain and spinal cord contain connexin-36 but not connexin-32 or connexin-43. Proc Natl Acad Sci USA. 2000;97:7573–8.PubMedCrossRefGoogle Scholar
  19. 19.
    De Zeeuw CI, Chorev E, Devor A, Manor Y, Van Der Giessen RS, De Jeu MT, et al. Deformation of network connectivity in the inferior olive of connexin 36-deficient mice is compensated by morphological and electrophysiological changes at the single neuron level. J Neurosci. 2003;23:4700–11.PubMedGoogle Scholar
  20. 20.
    Güldenagel M, Ammermüller J, Feigenspan A, Teubner B, Degen J, Söhl G, et al. Visual transmission deficits in mice with targeted disruption of the gap junction gene connexin 36. J Neurosci. 2001;21:6036–44.PubMedGoogle Scholar
  21. 21.
    Sasaki K, Bower JM, Llinás R. Multiple Purkinje cell recording in rodent cerebellar cortex. Eur J Neurosci. 1989;1:572–86.PubMedCrossRefGoogle Scholar
  22. 22.
    Eccles JC, Llinás R, Sasaki K. The excitatory synaptic action of climbing fibers on the Purkinje cells of the cerebellum. J Physiol (Lond). 1966;182:268–96.Google Scholar
  23. 23.
    Wylie DR, De Zeeuw CI, Simpson JI. Temporal relations of the complex spike activity of Purkinje cell pairs in the vestibulocerebellum of rabbits. J Neurosci. 1995;15:2875–87.PubMedGoogle Scholar
  24. 24.
    Sugihara I, Lang EJ, Llinás R. Uniform olivocerebellar conduction time underlies Purkinje cell complex spike synchronicity in the rat cerebellum. J Physiol (Lond). 1993;470:243–71.Google Scholar
  25. 25.
    Sugihara I, Marshall SP, Lang EJ. Relationship of complex spike synchrony bands and climbing fiber projection determined by reference to aldolase C compartments in crus IIa of the rat cerebellar cortex. J Comp Neurol. 2007, in press.Google Scholar
  26. 26.
    Lang EJ, Rosenbluth J. Role of myelination in the development of a uniform olivocerebellar conduction time. J Neurophysiol. 2003;89:2259–70.PubMedCrossRefGoogle Scholar
  27. 27.
    Lang EJ, Llinás R, Sugihara I. Isochrony in the olivocerebellar system underlies complex spike synchrony. J Physiol (Lond). 2006;573:277–9.CrossRefGoogle Scholar
  28. 28.
    Ariel M. Latencies of climbing fiber inputs to turtle cerebellar cortex. J Neurophysiol. 2005;93:1042–54.PubMedCrossRefGoogle Scholar
  29. 29.
    De Zeeuw CI, Holstege JC, Ruigrok TJH, Voogd J. Ultrastructural study of the GABAergic, cerebellar, and mesodiencephalic innervation of the cat medial accessory olive: Anterograde tracing combined with immunocytochemistry. J Comp Neurol. 1989;284:12–35.PubMedCrossRefGoogle Scholar
  30. 30.
    De Zeeuw CI, Lang EJ, Sugihara I, Ruigrok TJH, Eisenman LM, Mugnaini E, et al. Morphological correlates of bilateral synchrony in the rat cerebellar cortex. J Neurosci. 1996;16:3412–26.PubMedGoogle Scholar
  31. 31.
    Fredette BJ, Adams JC, Mugnaini E. GABAergic neurons in the mammalian inferior olive and ventral medulla detected by glutamate decarboxylase immunocytochemistry. J Comp Neurol. 1992;321:501–14.PubMedCrossRefGoogle Scholar
  32. 32.
    De Zeeuw CI, Koekkoek SKE, Wylie DRW, Simpson JI. Association between dendritic lamellar bodies and complex spike synchrony in the olivocerebellar system. J Neurophysiol. 1997;77:1747–58.PubMedGoogle Scholar
  33. 33.
    Kistler WM, De Jeu MTG, Elgersma Y, van der Giessen RS, Hensbroek R, Luo C, et al. Analysis of Cx36 knockout does not support tenet that olivary gap junctions are required for complex spike synchronization and normal motor performance. Ann NY Acad Sci. 2002;978:391–404.PubMedCrossRefGoogle Scholar
  34. 34.
    Leznik E. Spatio-temporal characteristics of oscillatory patterns in the inferior olivary nucleus. New York: New York University, School of Medicine; 2004.Google Scholar
  35. 35.
    Leznik E, Llinás R. Role of gap junctions in generating and synchronizing oscillations in the inferior olivary nucleus. Soc Neurosci Abstr. 2003: 274.12.Google Scholar
  36. 36.
    Leznik E, Llinás R. Role of gap junctions in synchronized neuronal oscillations in the inferior olive. J Neurophysiol. 2005;94:2447–56.PubMedCrossRefGoogle Scholar
  37. 37.
    Placantonakis DG, Bukovsky AA, Zeng X-H, Kiem H-P, Welsh JP. Fundamental role of inferior olive connexin 36 in muscle coherence during tremor. Proc Natl Acad Sci USA. 2004;101:7164–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Yarom Y. Rhythmogenesis in a hybrid system—interconnecting an olivary neuron to an analog network of coupled oscillators. Neuroscience. 1991;44:263–75.PubMedCrossRefGoogle Scholar
  39. 39.
    Bleasel AF, Pettigrew AG. Development and properties of spontaneous oscillations of the membrane potential in inferior olivary neurons in the rat. Dev Brain Res. 1992;65:43–50.CrossRefGoogle Scholar
  40. 40.
    Manor Y, Rinzel J, Segev I, Yarom Y. Low-amplitude oscillations in the inferior olive: A model based on electrical coupling of neurons with heterogeneous channel densities. J Neurophysiol. 1997;77:2736–52.PubMedGoogle Scholar
  41. 41.
    Long MA, Cruikshank SJ, Jutras MJ, Connors BW. Abrupt maturation of a spike-synchronizing mechanism in neocortex. J Neurosci. 2005;25:7309–16.PubMedCrossRefGoogle Scholar

Copyright information

© Taylor & Francis 2007

Authors and Affiliations

  • Sarah P. Marshall
    • 1
  • Ruben S. Van Der Giessen
    • 2
  • Chris I. De Zeeuw
    • 2
  • Eric J. Lang
    • 1
    Email author
  1. 1.Department of Physiology & NeuroscienceNew York University, School of MedicineNew YorkUSA
  2. 2.Department of NeuroscienceErasmus MCRotterdamThe Netherlands

Personalised recommendations