The Cerebellum

, Volume 5, Issue 4, pp 268–274 | Cite as

Cerebellar efferent neurons in teleost fish

  • Takanori Ikenaga
  • Masayuki Yoshida
  • Kazumasa Uematsu
Original Article Scientific Papers


In tetrapods, cerebellar efferent systems are mainly mediated via the cerebellar nuclei. In teleosts, the cerebellum lacks cerebellar nuclei. Instead, the cerebellar efferent neurons, termed eurydendroid cells, are arrayed within and below the ganglionic layer. Tracer injections outside of the cerebellum, which retrogradely label eurydendroid cells demonstrate that most eurydendroid cells possess two or more primary dendrites which extend broadly into the molecular layer. Some eurydendroid cells mostly situated in caudal portions of the cerebellum have only one primary dendrite. The eurydendroid cells receive inputs from the Purkinje cells and parallel fibers, but apparently do not receive inputs from the climbing fibers. Eurydendroid cells of the corpus cerebelli and medial valvula project to many brain regions, from the diencephalon to the caudal medulla. A few eurydendroid cells in the valvula project directly to the telencephalon. About half of the eurydendroid cells are aspartate immunopositive. Anti-GABA and anti-zebrin II antibodies that are known as markers for the Purkinje cells in mammals also recognize the Purkinje cells in the teleost cerebellum, but do not recognize the eurydendroid cells. These results suggest that the eurydendroid cells receive GABAergic inputs from the Purkinje cells. This relationship between the eurydendroid and Purkinje cells is similar to that between the cerebellar nuclei and Purkinje cells in mammals. The eurydendroid cells of teleost have both dissimilar as well as similar features compared to neurons of the cerebellar nuclei in tetrapods.

Key words

Eurydendroid cell Purkinje cell teleost cerebellar evolution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Buteer AB, Hodos W. Comparative vertebrate neuroanatomy. New York: Wiley-Liss, 1996.Google Scholar
  2. 2.
    Finger TE. Organization of the teleost cerebellum. In: Northcutt RG, Davis RE, editors. Fish neurobiology. Vol. 1. Ann Arbor: University of Michigan Press; 1983. pp 261–84.Google Scholar
  3. 3.
    Meek J, Nieuwenhuys R. Holosteans and teleosts. In: Nieuwenhuys R, tenDonkelaar HJ, Nicholson C, editors. The central nervous system of vertebrates. Vol. 2. Berlin: Springer-Verlag; 1998. pp 759–937.Google Scholar
  4. 4.
    Ito H. A catalogue of histological preparations of the teleost brains. Med J Osaka Univ. 1978;28:219–28.PubMedGoogle Scholar
  5. 5.
    Wullimann MF, Northcutt RG. Afferent connections of the valvula cerebelli in two teleosts, the common goldfish and the green sunfish. J Comp Neurol. 1989;289:554–67.PubMedCrossRefGoogle Scholar
  6. 6.
    Meek J. Comparative aspects of cerebellar organization. From mormyrids to mammals. Euro J Morphol. 1992;30:37–51.Google Scholar
  7. 7.
    Han VZ, Bell CC. Physiology of cells in the central lobes of the mormyrid cerebellum. J Neurosci. 2003;23:1147–57.Google Scholar
  8. 8.
    Altman J, Bayer SA. Development of the cerebellar system in relation to its evolution, structure, and functions. Boca Raton: CRC Press, 1997.Google Scholar
  9. 9.
    Nagao S, Kitamura T, Nakamura N, Hiramatsu T, Yamada J. Location of efferent terminals of the primate flocculus and ventral paraflocculus revealed by anterograde axonal transport methods. Neurosci Res. 1997;27:257–69.PubMedCrossRefGoogle Scholar
  10. 10.
    Addison WHF. A comparison of the cerebellar tracts in three teleosts. J Comp Neurol. 1923;36:1–35.CrossRefGoogle Scholar
  11. 11.
    Pearson AA. The acoustico-lateral centers and the cerebellum, with fiber connections of fishes. J Comp Neurol. 1936;65:201–95.CrossRefGoogle Scholar
  12. 12.
    Luiten PGM, Vander Pers JNC. The connections of the trigeminal and facial motor nuclei in the brain of the carp (Cyprinus carpio L.) as revealed by anterograde and retrograde transport of horseradish peroxidase. J Comp Neurol. 1977;174:575–90.PubMedCrossRefGoogle Scholar
  13. 13.
    Kidokoro Y. Cerebellar and vestibular control of fish oculomotor neurons. In: Llin’as R, editor. Neurobiology of cerebellar evolution and development. Chicago: Am Med Assoc; 1969. pp 256–76.Google Scholar
  14. 14.
    Kotchabhakdi N. Functional circuitry of the goldfish cerebellum. J Comp Physiol A. 1967;112:47–73.Google Scholar
  15. 15.
    Franz V. Das Kleinhim der Knochenfisch. Zool Jahrb Abt Anat. 1911;32:401–64.Google Scholar
  16. 16.
    Finger TE. Efferent neurons of the teleost cerebellum. Brain Res. 1978;153:608–14.PubMedCrossRefGoogle Scholar
  17. 17.
    Nieuwenhuys R, Pouwels E, Smulders-Kersten E. The neuronal organization of cerebellar lobe C1 in the mormyrid fish Gnathonemus petersii (Teleostei). Z Anat Entwickl-Gesch. 1974;144:315–36.CrossRefGoogle Scholar
  18. 18.
    Nieuwenhuys R, Nicholson C. Aspects of the histology of the cerebellum of mormyrid fishes. In: Llin’as R, editor. Neurobiology of cerebellar evolution and development. Chicago: Am Med Assoc; 1969. pp 135–69.Google Scholar
  19. 19.
    Pouwels E. On the development of the cerebellum of the trout, Salmo gairdneri. III. Development of neuronal elements. Anat Embryol. 1978;153:37–54.PubMedCrossRefGoogle Scholar
  20. 20.
    Murakami T, Morita Y. Morphology and distribution of the projection neurons in the cerebellum in a teleost, Sebastiscus marmoratus. J Comp Neurol. 1987;256:607–23.PubMedCrossRefGoogle Scholar
  21. 21.
    Ito H, Yoshimoto M. Cytoarchitecture and fiber connections of the nucleus lateralis valvulae in the carp (Cyprinus carpio). J Comp Neurol. 1990;298:385–99.PubMedCrossRefGoogle Scholar
  22. 22.
    Ikenaga T, Yoshida M, Uematsu K. Morphology and immunohistochemistry of efferent neurons of the goldfish corpus cerebelli. J Comp Neurol. 2005;487:300–11.PubMedCrossRefGoogle Scholar
  23. 23.
    Brochu G, Maler L, Hawkes R. Zebrin II: A polypeptide antigen expressed selectively by Purkinje cells reveals compartments in rat and fish cerebellum. J Comp Neurol. 1990;291:538–52.PubMedCrossRefGoogle Scholar
  24. 24.
    Lannoo MJ, Ross L, Maler L, Hawkes R. Development of the cerebellum and its extracerebellar Purkinje cell projection in teleost fishes as determined by zebrin II immunocytochemistry. Prog Neurobiol. 1991;37:329–63.PubMedCrossRefGoogle Scholar
  25. 25.
    Lannoo MJ, Brochu G, Maler L, Hawkes R. Zebrin II immunoreactivity in the rat and in the weakly electric teleost Eigenmannia (Gymnotiformes) reveals three modes of Purkinje cell development. J Comp Neurol. 1991;310:215–33.PubMedCrossRefGoogle Scholar
  26. 26.
    Ito M, Yoshida M, Obata K. Monosynaptic inhibition of the intracerebellar nuclei induced from the cerebellar cortex. Experientia. 1964;20:575–76.PubMedCrossRefGoogle Scholar
  27. 27.
    Ito M, Yoshida M, Obata K, Kawai N, Udo M. Inhibitory control of intracerebellar nuclei by the Purkinje cell axons. Exp Brain Res. 1970;10:64–80.PubMedCrossRefGoogle Scholar
  28. 28.
    Ottersen OP. Neurotransmitters in the cerebellum. Rev Neurol. 1993;49:629–36.Google Scholar
  29. 29.
    Eccles JC, Ito M, Szent’agothai J. The cerebellum as a neuronal machine. Berlin, New York, Heidelberg: Springer-Verlag, 1967.Google Scholar
  30. 30.
    Matsushita M, Ikeda M. Olicar projections to the cerebellar nuclei in the cat. Exp Brain Res. 1970;10:488–500.PubMedGoogle Scholar
  31. 31.
    Kitai ST, McCrea RA, Preston RJ, Bishop GA. Electrophysiological and horseradish peroxidase studies of precerebellar afferents to the nucleus interpositus anterior: I. Climbing fiber system. Brain Res. 1977;122:197–214.PubMedCrossRefGoogle Scholar
  32. 32.
    Groenewegen HJ, Voogd J. The parasagittal zonation within the olivocerebellar projection: I. Climbing fiber distribution in the vermis of cat cerebellum. J Comp Neurol. 1977;174: 417–88.PubMedCrossRefGoogle Scholar
  33. 33.
    Ito M. The cerebellum and neural control. New York: Raven Press, 1984.Google Scholar
  34. 34.
    vander Want JJL, Wiklund L, Geugan M, Ruigrok T, Voogd J. Anterograde tracing of the rat olivocerebellar system with Phaseolus vulgaris leucoagglutinin (PHA-L). Demonstration of climbing fiber collateral innervation of the cerebellar nuclei. J Comp Neurol. 1989;288:1–18.PubMedCrossRefGoogle Scholar
  35. 35.
    Ruigrok TJH, Voogd J. Organization of projections from the inferior olive to the cerebellar nuclei in the rat. J Comp Neurol. 2000;426:209–28.PubMedCrossRefGoogle Scholar
  36. 36.
    Sugihara I. Organization and remodeling of the olivocerebellar climbing fiber projection. Cerebellum. 2006;5:15–22.PubMedCrossRefGoogle Scholar
  37. 37.
    Matsushita M, Ikeda M. Projections from the lateral reticular nucleus to the cerebellar cortex and nuclei in the cat. Exp Brain Res. 1976;24:403–21.PubMedCrossRefGoogle Scholar
  38. 38.
    Gerrits NM, Voogd J. The projection of the nucleus reticularis tegmenti pontis and adjacent regions of the pontine nuclei to the central cerebellar nuclei in the cat. J Comp Neurol. 1987;258:52–62.PubMedCrossRefGoogle Scholar
  39. 39.
    Shinoda Y, Sugiuchi Y, Futani T, Izawa R. Axon collaterals of mossy fibers from the pontine nucleus in the cerebellar dentate nucleus. J Neurophysiol. 1992;67:547–60.PubMedGoogle Scholar
  40. 40.
    Matsushita M, Yaginuma H. Projections from the central cervical nucleus to the cerebellar nuclei in the rat, studied by anterograde axonal tracing. J Comp Neurol. 1995;353: 234–46.PubMedCrossRefGoogle Scholar
  41. 41.
    Wu HS, Sugihara I, Shinoda Y. Projection patterns of the single mossy fibers originating from the lateral reticular nucleus in the rat cerebellar cortex and nuclei. J Comp Neurol. 1999;411:97–118.PubMedCrossRefGoogle Scholar
  42. 42.
    Meek J, Nieuwenhuys R. Palisade pattern of mormyrid Purkinje cells: A correlated light and electron microscopic study. J Comp Neurol. 1991;306:156–92.PubMedCrossRefGoogle Scholar
  43. 43.
    Meek J, Nieuwenhuys R, Elsevier D. Afferent and efferent connections of cerebellar lobe C1 of the mormyrid fish Gnathonemus petersi: An HRP study. J Comp Neurol. 1986;245:319–41.PubMedCrossRefGoogle Scholar
  44. 44.
    Meek J, Nieuwenhuys R, Elsevier D. Afferent and efferent connections of cerebellar lobe C3 of the mormyrid fish Gnathonemus petersi: An HRP study. J Comp Neurol. 1986;245:342–58.PubMedCrossRefGoogle Scholar
  45. 45.
    Wullimann MF, Northcutt RG. Connections of the corpus cerebelli in the green sunfish and common goldfish: A comparison of perciform and cypriniform teleost. Brain Behav Evol. 1988;32:293–316.PubMedCrossRefGoogle Scholar
  46. 46.
    Ikenaga T, Yoshida M, Uematsu K. Efferent connections of the cerebellum of the goldfish, Carassius auratus. Brain Behav Evol. 2002;60:36–51.PubMedCrossRefGoogle Scholar
  47. 47.
    Torres R, Pastor AM, Cabrera B, Salas C, Delgado-Garcia JM. Afferents to the oculomotor nucleus in the goldfish (Carassius auratus) as revealed by retrograde labeling with horseradish peroxidase. J. Comp. Neurol. 1992;324:449–61.PubMedCrossRefGoogle Scholar
  48. 48.
    Yang CY, Yoshimoto M, Xue HG, Yamamoto N, Imura K, Sawai N, Ishikawa Y, Ito H. Fiber connections of the lateral valvular nucleus in a percomorph teleost, tilapia (Oreochromis niloticus). J Comp Neurol. 2004;474:209–26.PubMedCrossRefGoogle Scholar
  49. 49.
    Wullimann MF, Rooney DJ. A direct cerebello-telencephalic projection in an electrosensory mormyrid fish. Brain Res. 1990;520:354–7.PubMedCrossRefGoogle Scholar
  50. 50.
    Vonderschen K, Bleckmann H, Hofmann MH. A direct projection from the cerebellum to the telencephalon in the goldfish, Carassius auratus. Neurosci Lett. 2002;320: 37–40.PubMedCrossRefGoogle Scholar
  51. 51.
    Thach WT, Goodkin HP, Keating JG. The cerebellum and the adaptive coordination of movement. Annu Rev Neurosci. 1992;15:403–42.PubMedCrossRefGoogle Scholar
  52. 52.
    Kumoi K, Saito N, Kuno T, Tanaka C. Immunohistochemical localization of γ aminobutyric acid-and aspartate-containing neurons in the rat deep cerebellar nuclei. Brain Res. 1988;439:302–10.PubMedCrossRefGoogle Scholar
  53. 53.
    Chen S, Hillman DE. Colocalization of neurotransmitters in the deep cerebellar nuclei. J Neurocytol. 1993;22:81–91.PubMedCrossRefGoogle Scholar
  54. 54.
    Schwarz C, Schmitz Y. Projection from the cerebellar lateral nucleus to precerebellar nuclei in the mossy fiber pathway is glutamatergic: A study combining anterograde tracing with immunogold labeling in the rat. J Comp Neurol. 1997;381: 320–34.PubMedCrossRefGoogle Scholar
  55. 55.
    Grant K, Meek J, Sugawara Y, Veron M, Denizot JP, Hafmans TGM, Serrier J, Szabo T. Projection neurons of the mormyrid electrosensory lateral line lobe: Morphology, immunohistochemistry, and synaptology. J Comp Neurol. 1996;375:18–42.PubMedCrossRefGoogle Scholar
  56. 56.
    Alonso JR, Ar’evalo, Briñ’on JG, Lara J, Weruqaga E, Aij’on J. Parvalbumin immunoreactive neurons and fibers in the teleost cerebellum. Anat Embryol. 1992;185:355–61.PubMedCrossRefGoogle Scholar
  57. 57.
    Porteros A, Ar’evalo R, Briñ’on JG, Crespo C, Aij’on J, Alonso JR. Parvalbumin immunoreactivity during the development of the cerebellum of the rainbow trout. Dev Brain Res. 1998;109:221–27.CrossRefGoogle Scholar
  58. 58.
    Koulen P, Janowitz T, Johnston LD, Ehrlich BE. Conservation of localization patterns of IP3 receptor type 1 in cerebellar Purkinje cells across vertebrate species. J Neurosci Res. 2000;61:493–9.PubMedCrossRefGoogle Scholar
  59. 59.
    Miyamura Y, Nakayasu H. Zonal distribution of Purkinje cells in the zebrafish cerebellum: analysis by means of a specific monoclonal antibody. Cell Tissue Res. 2001;305:299–305.PubMedCrossRefGoogle Scholar
  60. 60.
    Mikami Y, Yoshida T, Matsuda N, Mishina M. Expression of zebrafish glutamate receptor 2 in neurons with cerebellum-like wiring. Biochem Biophys Res Commun. 2004;322:168–76.PubMedCrossRefGoogle Scholar
  61. 61.
    Meek J, Hafmans TGM, Maler L, Hawkes R. Distribution of zebrin II in the gigantocerebellum of the mormyrid fish Gnathonemus petersii compared with other teleosts. J Comp Neurol. 1992;316:17–31.PubMedCrossRefGoogle Scholar
  62. 62.
    Ebbesson SOE, Campbell CBG. On the organization of cerebellar efferent pathways in the nurse shark (Ginglymostoma cirratum). J Comp Neurol. 1973;152:233–54.PubMedCrossRefGoogle Scholar
  63. 63.
    Paul DH, Roberts BL. Projections of cerebellar Purkinje cells in the dogfish, Scyliorhinus. Neurosci Lett. 1984;44:43–6.PubMedCrossRefGoogle Scholar
  64. 64.
    Alvarez-Otero R, Perez SE, Rodriguez MA, Anad’on R. Organization of the cerebellar nucleus of the dogfish, Scyliorhinus canicula L.: A light microscopic, immunocytochemical, and ultrastructural study. J Comp Neurol. 1996;368:487–502.PubMedCrossRefGoogle Scholar
  65. 65.
    Huesa G, Anad’on R, Y’añez J. Afferent and efferent connections of the cerebellum of the chondrostean Acipenser baeri: A carbocyanine dye (DiI) tracing study. J Comp Neurol. 2003;460:327–44.PubMedCrossRefGoogle Scholar

Copyright information

© Taylor & Francis 2006

Authors and Affiliations

  • Takanori Ikenaga
    • 1
  • Masayuki Yoshida
    • 2
  • Kazumasa Uematsu
    • 2
  1. 1.Department of Cell and Developmental BiologyUniversity of Colorado Health Sciences CenterAuroraUSA
  2. 2.Laboratory of Fish Physiology, Graduate School of Biosphere ScienceHiroshima UniversityHigashi-HiroshimaJapan

Personalised recommendations