The Cerebellum

, 5:7 | Cite as

Cerebellar control of the inferior olive

Review Article Scientific Papers

Abstract

A subpopulation of neurones in the cerebellar nuclei projects to the inferior olive, the source of the climbing fibre input to the cerebellum. This nucleo-olivary projection follows the zonal and, probably also, the microzonal arrangement of the cerebellum so that closed loops are formed between the neurones in the olive, the cerebellar cortex and the nuclei. The nucleo-olivary pathway is GABAergic, but several investigators argue that its main effect is to regulate electrotonic coupling between cells in the inferior olive rather than inhibit the olive. However, there is now strong evidence that the nucleo-olivary fibres do inhibit the olive. Three functions have been suggested for this inhibition: (i) feedback control of background activity in Purkinje cells, (ii) feedback control of learning, and (iii) gating of olivary input in general. Evidence is consistent with (i) and (ii). Activity in the nucleo-olivary pathway suppresses both synaptic transmission and background activity in the olive. When learned blink responses develop, the blink related part of the olive is inhibited while blinks are produced. When the nucleo-olivary pathway is interrupted, there is a corresponding increase in complex spike discharge in Purkinje cells followed by a strong suppression of simple spike firing. Stimulation of the pathway has the opposite results. It is concluded that the nucleo-olivary fibres are inhibitory and that they form a number of independent feedback loops, each one specific for a microcomplex, that regulate cerebellar learning as well as spontaneous activity in the olivo-cerebellar circuit.

Keywords

Purkinje cell cerebellar nuclei inferior olive climbing fibre nucleo-olivary 

References

  1. 1.
    Graybiel AM, Nauta HJ, Lasek RJ, Nauta WJ. A cerebelloolivary pathway in the cat: An experimental study using autoradiographic tracing technics. Brain Res. 1973;58:205–11.PubMedCrossRefGoogle Scholar
  2. 2.
    Legendre A, Courville J. Origin and trajectory of the cerebello-olivary projection: An experimental study with radioactive and fluorescent tracers in the cat. Neuroscience. 1987;21:877–91.PubMedCrossRefGoogle Scholar
  3. 3.
    Martin GF, Henkel CK, King JS. Cerebello-olivary fibers: Their origin, course and distribution in the North American opossum. Exp Brain Res. 1976;24:219–36.PubMedCrossRefGoogle Scholar
  4. 4.
    Dietrichs E, Walberg F. Direct bidirectional connections between the inferior olive and the cerebellar nuclei. In: Strata P, editor. The olivocerbellar system in motor control. Berlin: Springer-Verlag; 1989. pp 61–81.Google Scholar
  5. 5.
    Ban M, Ohno T. Projection of cerebellar nuclear neurones to the inferior olive by descending collaterals of ascending fibres. Brain Res. 1977;133:156–61.PubMedCrossRefGoogle Scholar
  6. 6.
    Ito M. The cerebellum and neuronal control. New York: Raven Press; 1984.Google Scholar
  7. 7.
    Tsukahara N, Bando T, Murakami F, Oda Y. Properties of cerebello-precerebellar reverberating circuits. Brain Res. 1983;274:249–59.PubMedCrossRefGoogle Scholar
  8. 8.
    Hesslow G. Inhibition of inferior olivary transmission by mesencephalic stimulation in the cat. Neurosci Lett. 1986;63:76–80.PubMedCrossRefGoogle Scholar
  9. 9.
    Nelson B, Mugnaini E. Origins of GABA-ergic inputs to the inferior olive. In: Strata P, editor. The olivocerebellar system in motor control. Berlin, Heidelberg, New York, London, Paris, Tokyo: Springer-Verlag; 1989. pp 86–107.Google Scholar
  10. 10.
    Andersson G, Garwicz M, Hesslow G. Evidence for a GABA-mediated cerebellar inhibition of the inferior olive in the cat. Exp Brain Res. 1988;72:450–6.PubMedCrossRefGoogle Scholar
  11. 11.
    Tolbert DL, Massopust LC, Murphy MG, Young PA. The anatomical organization of the cerebello-olivary projection in the cat. J Comp Neurol. 1976;170:525–44.PubMedCrossRefGoogle Scholar
  12. 12.
    Dietrichs E, Walberg F. The cerebellar nucleo-olivary projection in the cat. Anat Embryol (Berl) 1981;162:51–67.CrossRefGoogle Scholar
  13. 13.
    Ruigrok TJ, Voogd J. Cerebellar nucleo-olivary projections in the rat: An anterograde tracing study with Phaseolus vulgarisleucoagglutinin (PHA-L). J Comp Neurol 1990;298:315–33.PubMedCrossRefGoogle Scholar
  14. 14.
    De Zeeuw CI, Holstege JC, Ruigrok TJ, Voogd J. Ultrastructural study of the GABAergic, cerebellar, and mesodiencephalic innervation of the cat medial accessory olive: Anterograde tracing combined with immunocytochemistry. J Comp Neurol 1989; 284:12–35.PubMedCrossRefGoogle Scholar
  15. 15.
    De Zeeuw CI, Ruigrok TJ, Holstege JC, Jansen HG, Voogd J. Intracellular labeling of neurons in the medial accessory olive of the cat: II. Ultrastructure of dendritic spines and their GABAergic innervation. J Comp Neurol 1990;300:478–94.PubMedCrossRefGoogle Scholar
  16. 16.
    Fredette BJ, Mugnaini E. The GABAergic cerebello-olivary projection in the rat. Anat Embryol (Berl). 1991;184:225–43.CrossRefGoogle Scholar
  17. 17.
    Tolbert DL, Bantli H, Bloedel JR. Multiple branching of cerebellar efferent projections in cats. Exp Brain Res. 1978;31:305–16.PubMedCrossRefGoogle Scholar
  18. 18.
    Svensson P, Bengtsson F, Hesslow G. Cerebellar inhibition of inferior olivary transmission in the decerebrate ferret. Exp Brain Res. 2006;168:241–53.PubMedCrossRefGoogle Scholar
  19. 19.
    Ruigrok TJ. Cerebellar nuclei: The olivary connection. Prog Brain Res. 1997;114:167–92.PubMedGoogle Scholar
  20. 20.
    Andersson G, Oscarsson O. Climbing fiber microzones in cerebellar vermis and their projection to different groups of cells in the lateral vestibular nucleus. Exp Brain Res. 1978;32:565–79.PubMedGoogle Scholar
  21. 21.
    Apps R, Garwicz M. Anatomical and physiological foundations of cerebellar information processing. Nature Rev: Neurosci. 2005;6:297–311.CrossRefGoogle Scholar
  22. 22.
    Andersson G, Hesslow G. Activity of Purkinje cells and interpositus neurones during and after periods of high frequency climbing fibre activation in the cat. Exp Brain Res. 1987;67:533–42.PubMedGoogle Scholar
  23. 23.
    De Zeeuw CI, van Alphen AM, Hawkins RK, Ruigrok TJ. Climbing fibre collaterals contact neurons in the cerebellar nuclei that provide a GABAergic feedback to the inferior olive. Neuroscience. 1997;80:981–6.PubMedCrossRefGoogle Scholar
  24. 24.
    De Zeeuw CI, Berrebi AS. Individual Purkinje cell axons terminate on both inhibitory and excitatory neurons in the cerebellar and vestibular nuclei. Ann NY Acad Sci. 1996;781:607–10.PubMedCrossRefGoogle Scholar
  25. 25.
    Garifoli A, Scardilli G, Perciavalle V. Effects of cerebellar dentate nucleus GABAergic cells on rat inferior olivary neurons. Neuroreport. 2001;12:3709–13.PubMedCrossRefGoogle Scholar
  26. 26.
    Andersson G, Hesslow G. Inferior olive excitability after high frequency climbing fibre activation in the cat. Exp Brain Res. 1987;67:523–32.PubMedGoogle Scholar
  27. 27.
    Andersson G, Hesslow G. Activity of Purkinje cells and interpositus neurones during and after periods of high frequency climbing fibre activation in the cat. Exp Brain Res. 1987;67:533–42.PubMedGoogle Scholar
  28. 28.
    Bengtsson F, Svensson P, Hesslow G. Feedback control of Purkinje cell activity by the cerebello-olivary pathway. Eur J Neurosci. 2004;20:2999–3005.PubMedCrossRefGoogle Scholar
  29. 29.
    Lang EJ, Sugihara I, Llinas R. GABAergic modulation of complex spike activity by the cerebellar nucleoolivary pathway in rat. J Neurophysiol. 1996;76:255–75.PubMedGoogle Scholar
  30. 30.
    Angaut P, Sotelo C. The dentato-olivary projection in the rat as a presumptive GABAergic link in the olivo-cerebelloolivary loop. An ultrastructural study. Neurosci Lett. 1987;83:227–31.PubMedCrossRefGoogle Scholar
  31. 31.
    Angaut P, Sotelo C. Synaptology of the cerebello-olivary pathway. Double labelling with anterograde axonal tracing and GABA immunocytochemistry in the rat. Brain Res. 1989;479:361–5.PubMedCrossRefGoogle Scholar
  32. 32.
    De Zeeuw CI, Ruigrok TJ. Olivary projecting neurons in the nucleus of Darkschewitsch in the cat receive excitatory monosynaptic input from the cerebellar nuclei. Brain Res. 1994;653:345–50.PubMedCrossRefGoogle Scholar
  33. 33.
    Ruigrok TJ, Voogd J. Cerebellar influence on olivary excitability in the cat. Eur J Neurosci. 1995;7:679–93.PubMedCrossRefGoogle Scholar
  34. 34.
    Onodera S. Olivary projections from the mesodiencephalic structures in the cat studied by means of axonal transport of horseradish peroxidase and tritiated amino acids. J Comp Neurol. 1984;227:37–49.PubMedCrossRefGoogle Scholar
  35. 35.
    De Zeeuw CI, Holstege JC, Ruigrok TJ, Voogd J. Mesodiencephalic and cerebellar terminals terminate upon the same dendritic spines in the glomeruli of the cat and rat inferior olive: An ultrastructural study using a combination of [3H]leucine and wheat germ agglutinin coupled horseradish peroxidase anterograde tracing. Neuroscience. 1990;34: 645–55.PubMedCrossRefGoogle Scholar
  36. 36.
    Thalmann RH, Ayala GF. A late increase in potassium conductance follows synaptic stimulation of granule neurons of the dentate gyrus. Neurosci Lett. 1982;29:243.PubMedCrossRefGoogle Scholar
  37. 37.
    Turgeon SM, Albin RL. Postnatal ontogeny of Gaba(B) binding in rat brain. Neuroscience. 1994;62:601–13.PubMedCrossRefGoogle Scholar
  38. 38.
    Mott DD, Li Q, Okazaki MM, Turner DA, Lewis DV. GABA(B)-receptor-mediated currents in interneurons of the dentate-hilus border. J Neurophysiol. 1999;82:1438–50.PubMedGoogle Scholar
  39. 39.
    Gingrich KJ, Roberts WA, Kass RS. Dependence of the GABAA receptor gating kinetics on the alpha-subunit isoform: implications for structure-function relations and synaptic transmission. J Physiol. 1995;489:529–43.PubMedGoogle Scholar
  40. 40.
    Devor A, Fritschy JM, Yarom Y. Spatial distribution and subunit composition of GABA(A) receptors in the inferior olivary nucleus. J Neurophysiol. 2001;85:1686–96.PubMedGoogle Scholar
  41. 41.
    Cerminara NL, Rawson JA. Evidence that climbing fibers control an intrinsic spike generator in cerebellar Purkinje cells. J Neurosci. 2004;24:4510–17.PubMedCrossRefGoogle Scholar
  42. 42.
    Hausser M, Clark BA. Tonic synaptic inhibition modulates neuronal output pattern and spatiotemporal synaptic integration. Neuron. 1997;19:665–78.PubMedCrossRefGoogle Scholar
  43. 43.
    Lang EJ. Organization of olivocerebellar activity in the absence of excitatory glutamatergic input. J Neurosci. 2001;21:1663–75.PubMedGoogle Scholar
  44. 44.
    Raman IM, Gustafson AE, Padgett D. Ionic currents and spontaneous firing in neurons isolated from the cerebellar nuclei. J Neurosci. 2000;20:9004–16.PubMedGoogle Scholar
  45. 45.
    Colin F, Manil J, Desclin JC. The olivocerebellar system. I. Delayed and slow inhibitory effects: An overlooked salient feature of cerebellar climbing fibers. Brain Res. 1980;187:3–27.PubMedCrossRefGoogle Scholar
  46. 46.
    Rawson JA, Tilokskulchai K. Suppression of simple spike discharges of cerebellar Purkinje cells by impulses in climbing fibre afferents. Neurosci Lett. 1981;25:125–30.PubMedCrossRefGoogle Scholar
  47. 47.
    Montarolo PG, Palestini M, Strata P. The inhibitory effect of the olivocerebellar input on the cerebellar Purkinje cells in the rat. J Physiol. 1982;332:187–202.PubMedGoogle Scholar
  48. 48.
    Demer JL, Echelman DA, Robinson DA. Effects of electrical stimulation and reversible lesions of the olivocerebellar pathway on Purkinje cell activity in the flocculus of the cat. Brain Res. 1985;346:22–31.PubMedCrossRefGoogle Scholar
  49. 49.
    Ekerot CF, Gustavsson P, Oscarsson O, Schouenborg J. Climbing fibres projecting to cat cerebellar anterior lobe activated by cutaneous A and C fibres. J Physiol (Lond). 1987;386:529–38.Google Scholar
  50. 50.
    Hesslow G. Correspondence between climbing fibre input and motor output in eyeblink-related areas in cat cerebellar cortex. J Physiol (Lond). 1994;476:229–44.Google Scholar
  51. 51.
    Miall RC, Keating JG, Malkmus M, Thach WT. Simple spike activity predicts occurrence of complex spike cerebellar Purkinje cells. Nature Neurosci. 1998;1:13–15.PubMedCrossRefGoogle Scholar
  52. 52.
    Jorntell H, Ekerot CF. Receptive field plasticity profoundly alters the cutaneous parallel fiber synaptic input to cerebellar interneurons in vivo. J Neurosci. 2003;23:9620–31.PubMedGoogle Scholar
  53. 53.
    Sugihara I, Wu H, Shinoda Y. Morphology of single olivocerebellar axons labeled with biotinylated dextran amine in the rat. J Comp Neurol. 1999;414:131–48.PubMedCrossRefGoogle Scholar
  54. 54.
    Hesslow G, Yeo CH. The functional anatomy of skeletal conditioning. In: Moore JW, editor. A neuroscientist’s guide to classical conditioning. New York: Springer-Verlag; 2002. pp 86–146.Google Scholar
  55. 55.
    Christian KM, Thompson RF. Neural substrates of eyeblink conditioning: Acquisition and retention. Learn Mem. 2003;10:427–55.PubMedCrossRefGoogle Scholar
  56. 56.
    Bengtsson F. The cerebello-olivary feedback system. Ph.D. Thesis, Lund University, 2005.Google Scholar
  57. 57.
    Sears LL, Steinmetz JE. Dorsal accessory inferior olive activity diminishes during acquisition of the rabbit classically conditioned eyelid response. Brain Res. 1991;545:114–22.PubMedCrossRefGoogle Scholar
  58. 58.
    Hesslow G, Ivarsson M. Inhibition of the inferior olive during conditioned responses in the decerebrate ferret. Exp Brain Res. 1996; 110:36–46.PubMedCrossRefGoogle Scholar
  59. 59.
    Nicholson DA, Freeman JH, Jr. Addition of inhibition in the olivocerebellar system and the ontogeny of a motor memory. Nature Neurosci. 2003;6:532–7.PubMedGoogle Scholar
  60. 60.
    Kamin LJ. Predictability, surprise attention and conditioning. In: Campbell B, Church R, editors. Punishment and aversive behavior. New York: Appleton-Century-Crofts; 1969.Google Scholar
  61. 61.
    Kim JJ, Krupa DJ, Thompson RF. Inhibitory cerebelloolivary projections and blocking effect in classical conditioning. Science. 1998;279:570–3.PubMedCrossRefGoogle Scholar
  62. 62.
    Medina JF, Nores WL, Mauk MD. Inhibition of climbing fibres is a signal for the extinction of conditioned eyelid responses. Nature. 2002;416:330–3.PubMedCrossRefGoogle Scholar
  63. 63.
    Apps R, Lee S. Gating of transmission in climbing fibre paths to cerebellar cortical C1 and C3 zones in the rostral paramedian lobule during locomotion in the cat [see comments]. J Physiol (Lond). 1999;516(Pt 3):875–83.CrossRefGoogle Scholar
  64. 64.
    Pardoe J, Edgley SA, Drew T, Apps R. Changes in excitability of ascending and descending inputs to cerebellar climbing fibres during locomotion. J Neurosci. 2004;24:2656–66.PubMedCrossRefGoogle Scholar
  65. 65.
    Devor A. The great gate: Control of sensory information flow to the cerebellum. Cerebellum. 2002;1:27–34.PubMedCrossRefGoogle Scholar
  66. 66.
    Apps R. Gating of climbing fibre input to cerebellar cortical zones. Prog Brain Res. 2000;124:201–11.PubMedCrossRefGoogle Scholar
  67. 67.
    Llinas R, Baker R, Sotelo C. Electrotonic coupling between neurons in cat inferior olive. J Neurophysiol. 1974;37: 560–71.PubMedGoogle Scholar
  68. 68.
    Sotelo C, Llinas R, Baker R. Structural study of inferior olivary nucleus of the cat: Morphological correlates of electrotonic coupling. J Neurophysiol. 1974;37:541–59.PubMedGoogle Scholar
  69. 69.
    De Zeeuw CI, Simpson JI, Hoogenraad CC, Galjart N, Koekkoek SK, Ruigrok TJ. Microcircuitry and function of the inferior olive. Trends Neurosci. 1998;21:391–400.PubMedCrossRefGoogle Scholar
  70. 70.
    Llinas R, Welsh JP. On the cerebellum and motor learning. Curr Opin Neurobiol. 1993;3:958–65.PubMedCrossRefGoogle Scholar
  71. 71.
    Kistler WM, De Jeu MT, Elgersma Y, Van Der Giessen RS, Hensbroek R, Luo C, et al. Analysis of Cx36 knockout does not support tenet that olivary gap junctions are required for complex spike synchronization and normal motor performance. Ann NY Acad Sci. 2002;978:391–404.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.Department of Experimental Medical Science, Division for NeuroscienceUniversity of LundSweden
  2. 2.LundSweden

Personalised recommendations